ﻻ يوجد ملخص باللغة العربية
The contact is an important concept that characterizes the universal properties of a strongly interacting quantum gas. It appears in both thermodynamic (energy, pressure, etc.) and dynamic quantities (radio-frequency and Bragg spectroscopies, etc.) of the system. Very recently, the concept of contact has been extended to higher partial waves, in particular, the p-wave contacts have been experimentally probed in recent experiment. So far discussions on p-wave contacts have been limited to three-dimensions. In this paper, we generalize the p-wave contacts to two-dimensions and derive a series of universal relations, including the adiabatic relations, high momentum distribution, virial theorem and pressure relation. At high temperature and low density limit, we calculated the p-wave contacts explicitly using virial expansion. A formula which directly connects the shift of the breathing mode frequency and the p-wave contacts are given in a harmonically trapped system. Finally, we also derive the relationships between interaction parameters in three and two dimensional Fermi gas and discuss possible experimental realization of two dimensional Fermi gas with p-wave interactions.
Many-body fermion systems are important in many branches of physics, including condensed matter, nuclear, and now cold atom physics. In many cases, the interactions between fermions can be approximated by a contact interaction. A recent theoretical a
Transport of strongly interacting fermions governs modern materials -- from the high-$T_c$ cuprates to bilayer graphene --, but also nuclear fission, the merging of neutron stars and the expansion of the early universe. Here we observe a universal qu
We show that short-range pair correlations in a strongly interacting Fermi gas follow a simple universal law described by Tans relations. This is achieved through measurements of the static structure factor which displays a universal scaling proporti
We study the spin-mixing dynamics of a one-dimensional strongly repulsive Fermi gas under harmonic confinement. By employing a mapping onto an inhomogeneous isotropic Heisenberg model and the symmetries under particle exchange, we follow the dynamics
We study the spin-Seebeck effect in a strongly interacting, two-component Fermi gas and propose an experiment to measure this effect by relatively displacing spin up and spin down atomic clouds in a trap using spin-dependent temperature gradients. We