ترغب بنشر مسار تعليمي؟ اضغط هنا

Finite size scaling study of a two parameter percolation model

293   0   0.0 ( 0 )
 نشر من قبل Bappaditya Roy
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A two parameter percolation model with nucleation and growth of finite clusters is developed taking the initial seed concentration rho and a growth parameter g as two tunable parameters. Percolation transition is determined by the final static configuration of spanning clusters. A finite size scaling theory for such transition is developed and numerically verified. The scaling functions are found to depend on both g and rho. The singularities at the critical growth probability gc of a given rho are described by appropriate critical exponents. The values of the critical exponents are found to be same as that of the original percolation at all values of rho at the respective gc . The model then belongs to the same universality class of percolation for the whole range of rho.



قيم البحث

اقرأ أيضاً

174 - Keith Slevin , Tomi Ohtsuki 2012
In Ref.1 (Physical Review B 80, 041304(R) (2009)), we reported an estimate of the critical exponent for the divergence of the localization length at the quantum Hall transition that is significantly larger than those reported in the previous publishe d work of other authors. In this paper, we update our finite size scaling analysis of the Chalker-Coddington model and suggest the origin of the previous underestimate by other authors. We also compare our results with the predictions of Lutken and Ross (Physics Letters B 653, 363 (2007)).
115 - Jiarul Midya , Subir K. Das 2016
Via a combination of molecular dynamics (MD) simulations and finite-size scaling (FSS) analysis, we study dynamic critical phenomena for the vapor-liquid transition in a three dimensional Lennard-Jones system. The phase behavior of the model, includi ng the critical point, have been obtained via the Monte Carlo simulations. The transport properties, viz., the bulk viscosity and the thermal conductivity, are calculated via the Green-Kubo relations, by taking inputs from the MD simulations in the microcanonical ensemble. The critical singularities of these quantities are estimated via the FSS method. The results thus obtained are in nice agreement with the predictions of the dynamic renormalization group and mode-coupling theories.
We perform Monte-Carlo simulations to study the Bernoulli ($p$) bond percolation on the enhanced binary tree which belongs to the class of nonamenable graphs with one end. Our numerical results show that the system has two different percolation thres holds $p_{c1}$ and $p_{c2}$. All the points in the intermediate phase $(p_{c1} < p < p_{c2})$ are critical and there exist infinitely many infinite clusters in the intermediate phase. In this phase the corresponding fractal exponent continuously increases with $p$ from zero to unity.
107 - O.Benichou 2000
We study the dynamics of a carrier, which performs a biased motion under the influence of an external field E, in an environment which is modeled by dynamic percolation and created by hard-core particles. The particles move randomly on a simple cubic lattice, constrained by hard-core exclusion, and they spontaneously annihilate and re-appear at some prescribed rates. Using decoupling of the third-order correlation functions into the product of the pairwise carrier-particle correlations we determine the density profiles of the environment particles, as seen from the stationary moving carrier, and calculate its terminal velocity, V_c, as the function of the applied field and other system parameters. We find that for sufficiently small driving forces the force exerted on the carrier by the environment particles shows a viscous-like behavior. An analog Stokes formula for such dynamic percolative environments and the corresponding friction coefficient are derived. We show that the density profile of the environment particles is strongly inhomogeneous: In front of the stationary moving carrier the density is higher than the average density, $rho_s$, and approaches the average value as an exponential function of the distance from the carrier. Past the carrier the local density is lower than $rho_s$ and the relaxation towards $rho_s$ may proceed differently depending on whether the particles number is or is not explicitly conserved.
We demonstrate that a two-dimensional finite and periodic array of Ising spins coupled via RKKY-like exchange can exhibit tunable magnetic states ranging from three distinct magnetic regimes: (1) a conventional ferromagnetic regime, (2) a glass-like regime, and (3) a new multi-well regime. These magnetic regimes can be tuned by one gate-like parameter, namely the ratio between the lattice constant and the oscillating interaction wavelength. We characterize the various magnetic regimes, quantifying the distribution of low energy states, aging relaxation dynamics, and scaling behavior. The glassy and multi-well behavior results from the competing character of the oscillating long-range exchange interactions. The multi-well structure features multiple attractors, each with a sizable basin of attraction. This may open the possible application of such atomic arrays as associative memories.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا