ﻻ يوجد ملخص باللغة العربية
In this paper we are concerned with a class of elliptic differential inequalities with a potential in bounded domains both of $mathbf{R}^m$ and of Riemannian manifolds. In particular, we investigate the effect of the behavior of the potential at the boundary of the domain on nonexistence of nonnegative solutions.
We are concerned with nonexistence results for a class of quasilinear parabolic differential problems with a potential in $Omegatimes(0,+infty)$, where $Omega$ is a bounded domain. In particular, we investigate how the behavior of the potential near
We derive a diffusion approximation for the kinetic Vlasov-Fokker-Planck equation in bounded spatial domains with specular reflection type boundary conditions. The method of proof involves the construction of a particular class of test functions to b
In the present paper, we investigate the regularity and symmetry properties of weak solutions to semilinear elliptic equations which are locally stable.
In this paper we study a sharp Hardy-Littlewood-Sobolev (HLS) type inequality with Riesz potential on bounded smooth domains. We obtain the inequality for a general bounded domain $Omega$ and show that if the extension constant for $Omega$ is strictl
Based on a recent work of Mancini-Thizy [28], we obtain the nonexistence of extremals for an inequality of Adimurthi-Druet [1] on a closed Riemann surface $(Sigma,g)$. Precisely, if $lambda_1(Sigma)$ is the first eigenvalue of the Laplace-Beltrami op