ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetic massive stars as progenitors of heavy stellar-mass black holes

262   0   0.0 ( 0 )
 نشر من قبل V\\'eronique Petit
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The groundbreaking detection of gravitational waves produced by the inspiralling and coalescence of the black hole (BH) binary GW150914 confirms the existence of heavy stellar-mass BHs with masses >25 Msun. Initial modelling of the system by Abbott et al. (2016a) supposes that the formation of black holes with such large masses from the evolution of single massive stars is only feasible if the wind mass-loss rates of the progenitors were greatly reduced relative to the mass-loss rates of massive stars in the Galaxy, concluding that heavy BHs must form in low-metallicity (Z < 0.25-0.5 Zsun) environments. However, strong surface magnetic fields also provide a powerful mechanism for modifying mass loss and rotation of massive stars, independent of environmental metallicity (ud-Doula & Owocki 2002; ud-Doula et al. 2008). In this paper we explore the hypothesis that some heavy BHs, with masses >25 Msun such as those inferred to compose GW150914, could be the natural end-point of evolution of magnetic massive stars in a solar-metallicity environment. Using the MESA code, we developed a new grid of single, non-rotating, solar metallicity evolutionary models for initial ZAMS masses from 40-80 Msun that include, for the first time, the quenching of the mass loss due to a realistic dipolar surface magnetic field. The new models predict TAMS masses that are significantly greater than those from equivalent non-magnetic models, reducing the total mass lost by a strongly magnetized 80 Msun star during its main sequence evolution by 20 Msun. This corresponds approximately to the mass loss reduction expected from an environment with metallicity Z = 1/30 Zsun.



قيم البحث

اقرأ أيضاً

133 - J. M. Miller 2009
If a black hole has a low spin value, it must double its mass to reach a high spin parameter. Although this is easily accomplished through mergers or accretion in the case of supermassive black holes in galactic centers, it is impossible for stellar- mass black holes in X-ray binaries. Thus, the spin distribution of stellar-mass black holes is almost pristine, largely reflective of the angular momentum imparted at the time of their creation. This fact can help provide insights on two fundamental questions: What is the nature of the central engine in supernovae and gamma-ray bursts? and What was the spin distribution of the first black holes in the universe?
We investigate the effects of mass loss during the main-sequence (MS) and post-MS phases of massive star evolution on black hole (BH) birth masses. We compute solar metallicity Geneva stellar evolution models of an 85 $M_{odot}$ star with mass-loss r ate ($dot{M}$) prescriptions for MS and post-MS phases and analyze under which conditions such models could lead to very massive BHs. Based on the observational constraints for $dot{M}$ of luminous stars, we discuss two possible scenarios that could produce massive BHs at high metallicity. First, if a massive BH progenitor evolves from the observed population of massive MS stars known as WNh stars, we show that its average post-MS mass-loss rate has to be less than $1,times10^{-5},M_{odot}$/yr. However, this is lower than the typical observed mass-loss rates of luminous blue variables (LBV). Second, a massive BH progenitor could evolve from a yet undetected population of $80-85$ $M_{odot}$ stars with strong surface magnetic fields, which could quench mass loss during the evolution. In this case, the average mass-loss rate during the post-MS LBV phase has to be less than $5,times10^{-5},M_{odot}$/yr to produce 70 $M_{odot}$ BHs. We suggest that LBVs that explode as SNe have large envelopes and small cores that could be prone to explosion, possibly evolving from binary interaction (either mergers or mass gainers that do not fully mix). Conversely, LBVs that directly collapse to BHs could have evolve from massive single stars or binary-star mergers that fully mix, possessing large cores that would favor BH formation.
We suggest in this note that spider systems are the naturally expected progenitors of the highest neutron star masses, and possibly low-mass black holes, based on their long-term evolutionary features and actual mass measurements.
115 - A. Lupi , F. Haardt , M. Dotti 2015
The rapid assembly of the massive black holes that power the luminous quasars observed at $z sim 6-7$ remains a puzzle. Various direct collapse models have been proposed to head-start black hole growth from initial seeds with masses $sim 10^5,rm M_od ot$, which can then reach a billion solar mass while accreting at the Eddington limit. Here we propose an alternative scenario based on radiatively inefficient super-critical accretion of stellar-mass holes embedded in the gaseous circum-nuclear discs (CNDs) expected to exist in the cores of high redshift galaxies. Our sub-pc resolution hydrodynamical simulations show that stellar-mass holes orbiting within the central 100 pc of the CND bind to very high density gas clumps that arise from the fragmentation of the surrounding gas. Owing to the large reservoir of dense cold gas available, a stellar-mass black hole allowed to grow at super-Eddington rates according to the slim disc solution can increase its mass by 3 orders of magnitudes within a few million years. These findings are supported by simulations run with two different hydro codes, RAMSES based on the Adaptive Mesh Refinement technique and GIZMO based on a new Lagrangian Godunov-type method, and with similar, but not identical, sub-grid recipes for star formation, supernova feedback, black hole accretion and feedback. The low radiative efficiency of super-critical accretion flows are instrumental to the rapid mass growth of our black holes, as they imply modest radiative heating of the surrounding nuclear environment.
The first directly detected gravitational waves (GW 150914) were emitted by two coalescing black holes (BHs) with masses of ~36Msun and ~29Msun. Several scenarios have been proposed to put this detection into an astrophysical context. The evolution o f an isolated massive binary system is among commonly considered models. Various groups have performed detailed binary-evolution calculations that lead to BH merger events. However, the question remains open as to whether binary systems with the predicted properties really exist. The aim of this paper is to help observers to close this gap by providing spectral characteristics of massive binary BH progenitors during a phase where at least one of the companions is still non-degenerate. Stellar evolution models predict fundamental stellar parameters. Using these as input for our stellar atmosphere code (PoWR), we compute a set of models for selected evolutionary stages of massive merging BH progenitors at different metallicities. The synthetic spectra obtained from our atmosphere calculations reveal that progenitors of massive BH merger events start their lives as O2-3V stars that evolve to early-type blue supergiants before they undergo core-collapse during the Wolf-Rayet phase. When the primary has collapsed, the remaining system will appear as a wind-fed high-mass X-ray binary. We provide feedback parameters, broad band magnitudes, and spectral templates that should help to identify such binaries in the future. Comparisons of empirically determined mass-loss rates with those assumed by evolution calculations reveal significant differences. The consideration of the empirical mass-loss rates in evolution calculations will possibly entail a shift of the maximum in the predicted binary-BH merger rate to higher metallicities, that is, more candidates should be expected in our cosmic neighborhood than previously assumed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا