ترغب بنشر مسار تعليمي؟ اضغط هنا

Ricci flow, Killing spinors, and T-duality in generalized geometry

130   0   0.0 ( 0 )
 نشر من قبل Mario Garcia-Fernandez
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We introduce a notion of Ricci flow in generalized geometry, extending a previous definition by Gualtieri on exact Courant algebroids. Special stationary points of the flow are given by solutions to first-order differential equations, the Killing spinor equations, which encompass special holonomy metrics with solutions of the Hull-Strominger system. Our main result investigates a method to produce new solutions of the Ricci flow and the Killing spinor equations. For this, we consider T-duality between possibly topologically distinct torus bundles endowed with Courant structures, and demonstrate that solutions of the equations are exchanged under this symmetry. As applications, we give a mathematical explanation of the dilaton shift in string theory and prove that the Hull-Strominger system is preserved by T-duality.



قيم البحث

اقرأ أيضاً

This book gives an introduction to fundamental aspects of generalized Riemannian, complex, and Kahler geometry. This leads to an extension of the classical Einstein-Hilbert action, which yields natural extensions of Einstein and Calabi-Yau structures as `canonical metrics in generalized Riemannian and complex geometry. The generalized Ricci flow is introduced as a tool for constructing such metrics, and extensions of the fundamental Hamilton/Perelman regularity theory of Ricci flow are proved. These results are refined in the setting of generalized complex geometry, where the generalized Ricci flow is shown to preserve various integrability conditions, taking the form of pluriclosed flow and generalized Kahler-Ricci flow. This leads to global convergence results, and applications to complex geometry. A purely mathematical introduction to the physical idea of T-duality is given, and a discussion of its relationship to generalized Ricci flow.
This paper is devoted to the classification of 4-dimensional Riemannian spin manifolds carrying skew Killing spinors. A skew Killing spinor $psi$ is a spinor that satisfies the equation $ abla$X$psi$ = AX $times$ $psi$ with a skew-symmetric endomorph ism A. We consider the degenerate case, where the rank of A is at most two everywhere and the non-degenerate case, where the rank of A is four everywhere. We prove that in the degenerate case the manifold is locally isometric to the Riemannian product R x N with N having a skew Killing spinor and we explain under which conditions on the spinor the special case of a local isometry to S 2 x R 2 occurs. In the non-degenerate case, the existence of skew Killing spinors is related to doubly warped products whose defining data we will describe.
We use newly discovered N = (2, 2) vector multiplets to clarify T-dualities for generalized Kahler geometries. Following the usual procedure, we gauge isometries of nonlinear sigma-models and introduce Lagrange multipliers that constrain the field-st rengths of the gauge fields to vanish. Integrating out the Lagrange multipliers leads to the original action, whereas integrating out the vector multiplets gives the dual action. The description is given both in N = (2, 2) and N = (1, 1) superspace.
We describe and to some extent characterize a new family of Kahler spin manifolds admitting non-trivial imaginary Kahlerian Killing spinors.
We survey some recent developments in the study of collapsing Riemannian manifolds with Ricci curvature bounded below, especially the locally bounded Ricci covering geometry and the Ricci flow smoothing techniques. We then prove that if a Calabi-Yau manifold is sufficiently volume collapsed with bounded diameter and sectional curvature, then it admits a Ricci-flat Kahler metrictogether with a compatible pure nilpotent Killing structure: this is related to an open question of Cheeger, Fukaya and Gromov.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا