ﻻ يوجد ملخص باللغة العربية
Extremely wide binary stars represent ideal systems to probe Newtonian dynamics in the low acceleration regimes (<10e-10 m/s/s) typical of the external regions of galaxies. Here we present a study of 60 alleged wide binary stars with projected separation ranging from 0.004 to 1 pc, probing gravitational accelerations well below the limit were dark matter or modified dynamics theories set in. Radial velocities with accuracy ~100 m/s were obtained for each star, in order to constrain their orbital velocity, that, together with proper motion data, can distinguish bound from unbound systems. It was found that about half of the observed pairs do have velocity in the expected range for bound systems, out to the largest separations probed here. In particular, we identified five pairs with projected separation >0.15 pc that are useful for the proposed test. While it would be premature to draw any conclusion about the validity of Newtonian dynamics at these low accelerations, our main result is that very wide binary stars seem to exist in the harsh environment of the solar neighborhood. This could provide a tool to test Newtonian dynamics versus modified dynamics theories in the low acceleration conditions typical of galaxies. In the near future the GAIA satellite will provide data to increase significantly the number of wide pairs that, with the appropriate follow up spectroscopic observations, will allow the implementation of this experiment with unprecedented accuracy.
Stellar kinematics in the external regions of globular clusters can be used to probe the validity of Newtons law in the low acceleration regimes without the complication of non-baryonic dark matter. Indeed, in contrast with what happens when studying
Modified Newtonian dynamics (MOND) is an empirical theory originally proposed to explain the rotation curves of spiral galaxies by modifying the gravitational acceleration, rather than by invoking dark matter. Here,we set constraints on MOND using an
A unique signature of the modified Newtonian dynamics (MOND) paradigm is its peculiar behavior in the vicinity of the points where the total Newtonian acceleration exactly cancels. In the Solar System, these are the saddle points of the gravitational
We consider the feasibility of testing Newtonian gravity at low accelerations using wide binary (WB) stars separated by $ge 3$ kAU. These systems probe the accelerations at which galaxy rotation curves unexpectedly flatline, possibly due to Modified
General Relativity is able to describe the dynamics of galaxies and larger cosmic structures only if most of the matter in the Universe is dark, namely it does not emit any electromagnetic radiation. Intriguingly, on the scale of galaxies, there is s