ﻻ يوجد ملخص باللغة العربية
To study which are the most general causal structures which are compatible with local quantum mechanics, Oreshkov et al. introduced the notion of a process: a resource shared between some parties that allows for quantum communication between them without a predetermined causal order. These processes can be used to perform several tasks that are impossible in standard quantum mechanics: they allow for the violation of causal inequalities, and provide an advantage for computational and communication complexity. Nonetheless, no process that can be used to violate a causal inequality is known to be physically implementable. There is therefore considerable interest in determining which processes are physical and which are just mathematical artefacts of the framework. Here we make the first step in this direction, by proposing a purification postulate: processes are physical only if they are purifiable. We derive necessary conditions for a process to be purifiable, and show that several known processes do not satisfy them.
In quantum mechanics events can happen in no definite causal order: in practice this can be verified by measuring a causal witness, in the same way that an entanglement witness verifies entanglement. Indefinite causal order can be observed in a quant
Realization of indefinite causal order (ICO), a theoretical possibility that even causal relations between physical events can be subjected to quantum superposition, apart from its general significance for the fundamental physics research, would also
Recently, the possible existence of quantum processes with indefinite causal order has been extensively discussed, in particular using the formalism of process matrices. Here we give a new perspective on this question, by establishing a direct connec
We demonstrate non-classical cooling on the IBMq cloud quantum computer. We implement a recently proposed refrigeration protocol which relies upon indefinite causal order for its quantum advantage. We use quantum channels which, when used in a well-d
In the classical world, physical events always happen in a fixed causal order. However, it was recently revealed that quantum mechanics allows events to occur with indefinite causal order (ICO). In this study, we use an optical quantum switch to expe