ﻻ يوجد ملخص باللغة العربية
A subset $S$ of a group $G$ invariably generates $G$ if $G= langle s^{g(s)} | s in Srangle$ for every choice of $g(s) in G,s in S$. We say that a group $G$ is invariably generated if such $S$ exists, or equivalently if $S=G$ invariably generates $G$. In this paper, we study invariable generation of Thompson groups. We show that Thompson group $F$ is invariable generated by a finite set, whereas Thompson groups $T$ and $V$ are not invariable generated.
We show that certain groups of piecewise linear homeomorphims of the interval are invariably generated.
We prove that R. Thompson groups F, T, V have linear divergence functions.
The groups G_{k,1} of Richard Thompson and Graham Higman can be generalized in a natural way to monoids, that we call M_{k,1}, and to inverse monoids, called Inv_{k,1}; this is done by simply generalizing bijections to partial functions or partial in
Let $G$ be a simple algebraic group over an algebraically closed field $k$ and let $C_1, ldots, C_t$ be non-central conjugacy classes in $G$. In this paper, we consider the problem of determining whether there exist $g_i in C_i$ such that $langle g_1
Let $G$ be a simple algebraic group over an algebraically closed field and let $X$ be an irreducible subvariety of $G^r$ with $r geqslant 2$. In this paper, we consider the general problem of determining if there exists a tuple $(x_1, ldots, x_r) in