ترغب بنشر مسار تعليمي؟ اضغط هنا

Demonstrating an absolute quantum advantage in direct absorption measurement

241   0   0.0 ( 0 )
 نشر من قبل Paul-Antoine Moreau Dr.
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Engineering apparatus that harness quantum theory offers practical advantages over current technology. A fundamentally more powerful prospect is the long-standing prediction that such quantum technologies could out-perform any future iteration of their classical counterparts, no matter how well the attributes of those classical strategies can be improved. Here, we experimentally demonstrate such an instance of textit{absolute} advantage per photon probe in the precision of optical direct absorption measurement. We use correlated intensity measurements of spontaneous parametric downconversion using a commercially available air-cooled CCD, a new estimator for data analysis and a high heralding efficiency photon-pair source. We show this enables improvement in the precision of measurement, per photon probe, beyond what is achievable with an ideal coherent state (a perfect laser) detected with $100%$ efficient and noiseless detection. We see this absolute improvement for up to $50%$ absorption, with a maximum observed factor of improvement of 1.46. This equates to around $32%$ reduction in the total number of photons traversing an optical sample, compared to any future direct optical absorption measurement using classical light.



قيم البحث

اقرأ أيضاً

Quantum computer, harnessing quantum superposition to boost a parallel computational power, promises to outperform its classical counterparts and offer an exponentially increased scaling. The term quantum advantage was proposed to mark the key point when people can solve a classically intractable problem by artificially controlling a quantum system in an unprecedented scale, even without error correction or known practical applications. Boson sampling, a problem about quantum evolutions of multi-photons on multimode photonic networks, as well as its variants, has been considered as a promising candidate to reach this milestone. However, the current photonic platforms suffer from the scaling problems, both in photon numbers and circuit modes. Here, we propose a new variant of the problem, timestamp membosonsampling, exploiting the timestamp information of single photons as free resources, and the scaling of the problem can be in principle extended to infinitely large. We experimentally verify the scheme on a self-looped photonic chip inspired by memristor, and obtain multi-photon registrations up to 56-fold in 750,000 modes with a Hilbert space up to $10^{254}$. Our work exhibits an integrated and cost-efficient shortcut stepping into the quantum advantage regime in a photonic system far beyond previous scenarios, and provide a scalable and controllable platform for quantum information processing.
The time-symmetric formalism endows the weak measurement and its outcome, the weak value, many unique features. In particular, it allows a direct tomography of quantum states without resort to complicated reconstruction algorithms and provides an ope rational meaning to wave functions and density matrices. To date the direct tomography only takes the forward direction of the weak measurement. Here we propose the direct tomography of a measurement apparatus by combining the backward direction of weak measurement and retrodictive description of quantum measurement. As an experimental demonstration, the scheme is applied to the characterization of both projective measurements and general positive operator-valued measures with a photonic setup. Our work provides new insight on the symmetry between quantum states and measurements, as well as an efficient method to characterize a measurement apparatus.
Claude Shannon proved in 1949 that information-theoretic-secure encryption is possible if the encryption key is used only once, is random, and is at least as long as the message itself. Notwithstanding, when information is encoded in a quantum system , the phenomenon of quantum data locking allows one to encrypt a message with a shorter key and still provide information-theoretic security. We present one of the first feasible experimental demonstrations of quantum data locking for direct communication and propose a scheme for a quantum enigma machine that encrypts 6 bits per photon (containing messages, new encryption keys, and forward error correction bits) with less than 6 bits per photon of encryption key while remaining information-theoretically secure.
Integrated optics provides an ideal test bed for the emulation of quantum systems via continuous-time quantum walks. Here we study the evolution of two-photon states in an elliptic array of waveguides. We characterise the photonic chip via coherent-l ight tomography and use the results to predict distinct differences between temporally indistinguishable and distinguishable two-photon inputs which we then compare with experimental observations. Our work highlights the feasibility for emulation of coherent quantum phenomena in three-dimensional waveguide structures.
The scaling up of quantum hardware is the fundamental challenge ahead in order to realize the disruptive potential of quantum technology in information science. Among the plethora of hardware platforms, photonics stands out by offering a modular appr oach, where the main challenge is to construct sufficiently high-quality building blocks and develop methods to efficiently interface them. Importantly, the subsequent scaling-up will make full use of the mature integrated photonic technology provided by photonic foundry infrastructure to produce small foot-print quantum processors of immense complexity. A fully coherent and deterministic photon-emitter interface is a key enabler of quantum photonics, and can today be realized with solid-state quantum emitters with specifications reaching the quantitative benchmark referred to as Quantum Advantage. This light-matter interaction primer realizes a range of quantum photonic resources and functionalities, including on-demand single-photon and multi-photon entanglement sources, and photon-photon nonlinear quantum gates. We will present the current state-of-the-art in single-photon quantum hardware and the main photonic building blocks required in order to scale up. Furthermore, we will point out specific promising applications of the hardware building blocks within quantum communication and photonic quantum computing, laying out the road ahead for quantum photonics applications that could offer a genuine quantum advantage.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا