ﻻ يوجد ملخص باللغة العربية
The use of artificial atoms as an active lasing medium opens a way to construct novel sources of nonclassical radiation. An example is the creation of photon-number squeezed light. Here we present a design of a laser consisting of multiple Cooper-pair transistors coupled to a microwave resonator. Over a broad range of experimentally realizable parameters, this laser creates photon-number squeezed microwave radiation, characterized by a Fano factor $F ll 1$, at a very high resonator photon number. We investigate the impact of gate-charge disorder in a Cooper-pair transistor and show that the system can create squeezed strong microwave fields even in the presence of maximum disorder.
We measure an aluminum superconducting double quantum dot and find that its electrical impedance, specifically its quantum capacitance, depends on whether or not it contains a single broken Cooper pair. In this way we are able to observe, in real tim
This article discusses how to demonstrate the entanglement of the split Cooper pairs produced in a double-quantum-dot based Cooper pair beam splitter (CPS), by performing the microwave spectroscopy of the CPS. More precisely, one can study the DC cur
Photon emission by tunneling electrons can be encouraged by locating a resonator close to the tunnel junction and applying an appropriate voltage-bias. However, studies of normal metals show that the resonator also affects how the charges flow, facil
Thermoelectric effect generating electricity from thermal gradient and vice versa appears in numerous generic applications. Recently, an original prospect of thermoelectricity arising from the nonlocal Cooper pair splitting (CPS) and the elastic co-t
We propose a scheme involving a Cooper pair transistor (CPT) embedded in a superconducting microwave cavity, where the CPT serves as a charge tunable quantum inductor to facilitate ultra-strong coupling between photons in the cavity and a nano- to me