ﻻ يوجد ملخص باللغة العربية
We present the results of high-resolution valence-band photoemission spectroscopic study of SmB6 which shows evidence for a V-shaped density of states of surface origin within the bulk gap. The spectroscopy data is interpreted in terms of the existence of heavy 4f surface states, which may be useful in resolving the controversy concerning the disparate surface Fermi-surface velocities observed in experiments. Most importantly, we find that the temperature dependence of the valence-band spectrum indicates that a small feature appears at a binding energy of about -9 meV at low temperatures. We attribute this feature to a resonance caused by the spin-exciton scattering in SmB6 which destroys the protection of surface states due to time-reversal invariance and spin-momentum locking. The existence of a low-energy spin-exciton may be responsible for the scattering which suppresses the formation of coherent surface quasi-particles and the appearance of the saturation of the resistivity to temperatures much lower than the coherence temperature associated with the opening of the bulk gap.
The mixed valent compound SmB6 is of high current interest as the first candidate example of topologically protected surface states in a strongly correlated insulator and also as a possible host for an exotic bulk many-body state that would manifest
The rise of topology in condensed matter physics has generated strong interest in identifying novel quantum materials in which topological protection is driven by electronic correlations. Samarium hexaboride is a Kondo insulator for which it has been
Recent renewed interest in the mixed valent insulator SmB6 comes from topological theory predictions and surface transport measurements of possible in-gap surface states whose existence is most directly probed by angle-resolved photoemission spectros
A comprehensive understanding of spin-polarized photoemission is crucial for accessing the electronic structure of spin-orbit coupled materials. Yet, the impact of the final state in the photoemission process on the photoelectron spin has been diffic
Recent studies suggest that an exemplary Kondo insulator SmB6 belongs to a new class of topological insulators (TIs), in which non-trivial spin-polarized metallic states emerge on surface upon the formation of Kondo hybridization gap in the bulk. Rem