ترغب بنشر مسار تعليمي؟ اضغط هنا

Full Bell locality of a noisy state for $Ngeq 3$ nonlocally entangled qudits

80   0   0.0 ( 0 )
 نشر من قبل Elena R. Loubenets
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Bounds, expressed in terms of d and N, on full Bell locality of a quantum state for $Ngeq 3$ nonlocally entangled qudits (of a dimension $dgeq 2$) mixed with white noise are known, to our knowledge, only within full separability of this noisy N-qudit state. For the maximal violation of general Bell inequalities by an N-partite quantum state, we specify the analytical upper bound expressed in terms of dilation characteristics of this state, and this allows us to find new general bounds in $d, N$, valid for all $dgeq 2$ and all $Ngeq 3$, on full Bell locality under generalized quantum measurements of (i) the N-qudit GHZ state mixed with white noise and (ii) an arbitrary N-qudit state mixed with white noise. The new full Bell locality bounds are beyond the known ranges for full separability of these noisy N-qudit states.



قيم البحث

اقرأ أيضاً

Generalizations of the classic Bell inequality to higher dimensional quantum systems known as qudits are reputed to exhibit a higher degree of robustness to noise, but such claims are based on one particular noise model. We analyze the violation of t he Collins-Gisin-Linden-Massar-Popescu inequality subject to more realistic noise sources and their scaling with dimension. This analysis is inspired by potential Bell inequality experiments with superconducting resonator-based qudits. We find that the robustness of the inequality to noise generally decreases with increasing qudit dimension.
Focus is on two parties with Hilbert spaces of dimension d, i.e. qudits. In the state space of these two possibly entangled qudits an analogue to the well known tetrahedron with the four qubit Bell states at the vertices is presented. The simplex ana logue to this magic tetrahedron includes mixed states. Each of these states appears to each of the two parties as the maximally mixed state. Some studies on these states are performed, and special elements of this set are identified. A large number of them is included in the chosen simplex which fits exactly into conditions needed for teleportation and other applications. Its rich symmetry - related to that of a classical phase space - helps to study entanglement, to construct witnesses and perform partial transpositions. This simplex has been explored in details for d=3. In this paper the mathematical background and extensions to arbitrary dimensions are analysed.
We introduce two types of statistical quasi-separation between local observables to construct two-party Bell-type inequalities for an arbitrary dimensional systems and arbitrary number of measurement settings per site. Note that, the main difference between statistical quasi-separations and the usual statistical separations is that the former are not symmetric under exchange of the two local observables, whereas latter preserve the symmetry. We show that a variety of Bell inequalities can be derived by sequentially applying triangle inequalities which statistical quasi-separations satisfy. A sufficient condition is presented to show quantum violations of the Bell-type inequalities with infinitesimal values of critical visibility $v_c$.
Quantum tomography makes it possible to obtain comprehensive information about certain logical elements of a quantum computer. In this regard, it is a promising tool for debugging quantum computers. The practical application of tomography, however, i s still limited by systematic measurement errors. Their main source are errors in the quantum state preparation and measurement procedures. In this work, we investigate the possibility of suppressing these errors in the case of ion-based qudits. First, we will show that one can construct a quantum measurement protocol that contains no more than a single quantum operation in each measurement circuit. Such a protocol is more robust to errors than the measurements in mutually unbiased bases, where the number of operations increases in proportion to the square of the qudit dimension. After that, we will demonstrate the possibility of determining and accounting for the state initialization and readout errors. Together, the measures described can significantly improve the accuracy of quantum tomography of real ion-based qudits.
We propose a method to generate analytical quantum Bell inequalities based on the principle of Macroscopic Locality. By imposing locality over binary processings of virtual macroscopic intensities, we establish a correspondence between Bell inequalit ies and quantum Bell inequalities in bipartite scenarios with dichotomic observables. We discuss how to improve the latter approximation and how to extend our ideas to scenarios with more than two outcomes per setting.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا