ترغب بنشر مسار تعليمي؟ اضغط هنا

Video Processing from Electro-optical Sensors for Object Detection and Tracking in Maritime Environment: A Survey

211   0   0.0 ( 0 )
 نشر من قبل Dilip K. Prasad
 تاريخ النشر 2016
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a survey on maritime object detection and tracking approaches, which are essential for the development of a navigational system for autonomous ships. The electro-optical (EO) sensor considered here is a video camera that operates in the visible or the infrared spectra, which conventionally complement radar and sonar and have demonstrated effectiveness for situational awareness at sea has demonstrated its effectiveness over the last few years. This paper provides a comprehensive overview of various approaches of video processing for object detection and tracking in the maritime environment. We follow an approach-based taxonomy wherein the advantages and limitations of each approach are compared. The object detection system consists of the following modules: horizon detection, static background subtraction and foreground segmentation. Each of these has been studied extensively in maritime situations and has been shown to be challenging due to the presence of background motion especially due to waves and wakes. The main processes involved in object tracking include video frame registration, dynamic background subtraction, and the object tracking algorithm itself. The challenges for robust tracking arise due to camera motion, dynamic background and low contrast of tracked object, possibly due to environmental degradation. The survey also discusses multisensor approaches and commercial maritime systems that use EO sensors. The survey also highlights methods from computer vision research which hold promise to perform well in maritime EO data processing. Performance of several maritime and computer vision techniques is evaluated on newly proposed Singapore Maritime Dataset.



قيم البحث

اقرأ أيضاً

This paper discusses the technical challenges in maritime image processing and machine vision problems for video streams generated by cameras. Even well documented problems of horizon detection and registration of frames in a video are very challengi ng in maritime scenarios. More advanced problems of background subtraction and object detection in video streams are very challenging. Challenges arising from the dynamic nature of the background, unavailability of static cues, presence of small objects at distant backgrounds, illumination effects, all contribute to the challenges as discussed here.
Geopositioning and tracking a moving boat at sea is a very challenging problem, requiring boat detection, matching and estimating its GPS location from imagery with no common features. The problem can be stated as follows: given imagery from a camera mounted on a moving platform with known GPS location as the only valid sensor, we predict the geoposition of a target boat visible in images. Our solution uses recent ML algorithms, the camera-scene geometry and Bayesian filtering. The proposed pipeline first detects and tracks the target boats location in the image with the strategy of tracking by detection. This image location is then converted to geoposition to the local sea coordinates referenced to the camera GPS location using plane projective geometry. Finally, target boat local coordinates are transformed to global GPS coordinates to estimate the geoposition. To achieve a smooth geotrajectory, we apply unscented Kalman filter (UKF) which implicitly overcomes small detection errors in the early stages of the pipeline. We tested the performance of our approach using GPS ground truth and show the accuracy and speed of the estimated geopositions. Our code is publicly available at https://github.com/JianliWei1995/AI-Track-at-Sea.
The problem of Multiple Object Tracking (MOT) consists in following the trajectory of different objects in a sequence, usually a video. In recent years, with the rise of Deep Learning, the algorithms that provide a solution to this problem have benef ited from the representational power of deep models. This paper provides a comprehensive survey on works that employ Deep Learning models to solve the task of MOT on single-camera videos. Four main steps in MOT algorithms are identified, and an in-depth review of how Deep Learning was employed in each one of these stages is presented. A complete experimental comparison of the presented works on the three MOTChallenge datasets is also provided, identifying a number of similarities among the top-performing methods and presenting some possible future research directions.
In this paper, the main task we aim to tackle is the multi-instance semi-supervised video object segmentation across a sequence of frames where only the first-frame box-level ground-truth is provided. Detection-based algorithms are widely adopted to handle this task, and the challenges lie in the selection of the matching method to predict the result as well as to decide whether to update the target template using the newly predicted result. The existing methods, however, make these selections in a rough and inflexible way, compromising their performance. To overcome this limitation, we propose a novel approach which utilizes reinforcement learning to make these two decisions at the same time. Specifically, the reinforcement learning agent learns to decide whether to update the target template according to the quality of the predicted result. The choice of the matching method will be determined at the same time, based on the action history of the reinforcement learning agent. Experiments show that our method is almost 10 times faster than the previous state-of-the-art method with even higher accuracy (region similarity of 69.1% on DAVIS 2017 dataset).
Object detection in videos has drawn increasing attention since it is more practical in real scenarios. Most of the deep learning methods use CNNs to process each decoded frame in a video stream individually. However, the free of charge yet valuable motion information already embedded in the video compression format is usually overlooked. In this paper, we propose a fast object detection method by taking advantage of this with a novel Motion aided Memory Network (MMNet). The MMNet has two major advantages: 1) It significantly accelerates the procedure of feature extraction for compressed videos. It only need to run a complete recognition network for I-frames, i.e. a few reference frames in a video, and it produces the features for the following P frames (predictive frames) with a light weight memory network, which runs fast; 2) Unlike existing methods that establish an additional network to model motion of frames, we take full advantage of both motion vectors and residual errors that are freely available in video streams. To our best knowledge, the MMNet is the first work that investigates a deep convolutional detector on compressed videos. Our method is evaluated on the large-scale ImageNet VID dataset, and the results show that it is 3x times faster than single image detector R-FCN and 10x times faster than high-performance detector MANet at a minor accuracy loss.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا