ﻻ يوجد ملخص باللغة العربية
Via the application of parallel magnetic field, we induce a single-layer to bilayer transition in two-dimensional electron systems confined to wide GaAs quantum wells, and study the geometric resonance of composite fermions (CFs) with a periodic density modulation in our samples. The measurements reveal that CFs exist close to bilayer quantum Hall states, formed at Landau level filling factors $ u=1$ and 1/2. Near $ u=1$, the geometric resonance features are consistent with half the total electron density in the bilayer system, implying that CFs prefer to stay in separate layers and exhibit a two-component behavior. In contrast, close to $ u=1/2$, CFs appear single-layer-like (single-component) as their resonance features correspond to the total density.
We observe geometric resonance features of composite fermions on the flanks of the even denominator { u} = 1/2 fractional quantum Hall state in high-mobility two-dimensional electron and hole systems confined to wide GaAs quantum wells and subjected
Two-dimensional interacting electrons exposed to strong perpendicular magnetic fields generate emergent, exotic quasiparticles phenomenologically distinct from electrons. Specifically, electrons bind with an even number of flux quanta, and transform
We study the role of anisotropy on the transport properties of composite fermions near Landau level filling factor $ u=1/2$ in two-dimensional holes confined to a GaAs quantum well. By applying a parallel magnetic field, we tune the composite fermion
Composite fermions in fractional quantum Hall (FQH) systems are believed to form a Fermi sea of weakly interacting particles at half filling $ u=1/2$. Recently, it was proposed (D. T. Son, Phys. Rev. X 5, 031027 (2015)) that these composite fermions
Composite fermion metal states emerge in quantum Hall bilayers at total Landau level filling factor $ u_T$=1 when the tunneling gap collapses by application of in-plane components of the external magnetic field. Evidence of this transformation is fou