ﻻ يوجد ملخص باللغة العربية
The first purpose of this note is to comment on a recent article of Bursztyn, Lima and Meinrenken, in which it is proved that if M is a smooth submanifold of a manifold V, then there is a bijection between germs of tubular neighborhoods of M and germs of Euler-like vector fields on V. We shall explain how to approach this bijection through the deformation to the normal cone that is associated to the embedding of M into V. The second purpose is to study generalizations to smooth manifolds equipped with Lie filtrations. Following in the footsteps of several others, we shall define a deformation to the normal cone that is appropriate to this context, and relate it to Euler-like vector fields and tubular neighborhood embeddings.
The theory of harmonic vector fields on Riemannian manifolds is generalised to pseudo-Riemannian manifolds. Harmonic conformal gradient fields on pseudo-Euclidean hyperquadrics are classified up to congruence, as are harmonic Killing fields on pseudo
In this paper, we use a Killing form on a Riemannian manifold to construct a class of Finsler metrics. We find equations that characterize Einstein metrics among this class. In particular, we construct a family of Einstein metrics on $S^3$ with ${rm
We characterize the exact lumpability of smooth vector fields on smooth manifolds. We derive necessary and sufficient conditions for lumpability and express them from four different perspectives, thus simplifying and generalizing various results from
A connected Riemannian manifold M has constant vector curvature epsilon, denoted by cvc(epsilon), if every tangent vector v in TM lies in a 2-plane with sectional curvature epsilon. By scaling the metric on M, we can always assume that epsilon = -1,
In this paper, it is proved that any conformal vector field is homothetic on a locally projectively flat $(alpha,beta)$-space of non-Randers type in dimension $nge 3$, and the local solutions of such a vector field are determined. While on a locally