ﻻ يوجد ملخص باللغة العربية
We show obstructions to the existence of a coclosed $G_2$-structure on a Lie algebra $mathfrak g$ of dimension seven with non-trivial center. In particular, we prove that if there exist a Lie algebra epimorphism from $mathfrak g$ to a six-dimensional Lie algebra $mathfrak h$, with kernel contained in the center of $mathfrak g$, then any coclosed $G_2$-structure on $mathfrak g$ induces a closed and stable three form on $mathfrak h$ that defines an almost complex structure on $mathfrak h$. As a consequence, we obtain a classification of the 2-step nilpotent Lie algebras which carry coclosed $G_2$-structures. We also prove that each one of these Lie algebras has a coclosed $G_2$-structure inducing a nilsoliton metric, but this is not true for 3-step nilpotent Lie algebras with coclosed $G_2$-structures. The existence of contact metric structures is also studied.
We study the existence of left invariant closed $G_2$-structures defining a Ricci soliton metric on simply connected nonabelian nilpotent Lie groups. For each one of these $G_2$-structures, we show long time existence and uniqueness of solution for
We consider seven-dimensional unimodular Lie algebras $mathfrak{g}$ admitting exact $G_2$-structures, focusing our attention on those with vanishing third Betti number $b_3(mathfrak{g})$. We discuss some examples, both in the case when $b_2(mathfrak{
We review results about $G_2$-structures in relation to the existence of special metrics, such as Einstein metrics and Ricci solitons, and the evolution under the Laplacian flow on non-compact homogeneous spaces. We also discuss some examples in detail.
An alternative proof of the existence of torsion-free $G_2$-structures on resolutions of $G_2$-orbifolds considered in arXiv:1707.09325 is given. The proof uses weighted Holder norms which are adapted to the geometry of the manifold. This leads to be
In some other context, the question was raised how many nearly Kahler structures exist on the sphere $S^6$ equipped with the standard Riemannian metric. In this short note, we prove that, up to isometry, there exists only one. This is a consequence