ﻻ يوجد ملخص باللغة العربية
Ballistic electrons in solids can have mean free paths far larger than the smallest features patterned by lithography. This has allowed development and study of solid-state electron-optical devices such as beam splitters and quantum point contacts, which have informed our understanding of electron flow and interactions. Recently, high-mobility graphene has emerged as an ideal two-dimensional semimetal that hosts unique chiral electron-optical effects due to its honeycomb crystalline lattice. However, this chiral transport prevents simple use of electrostatic gates to define electron-optical devices in graphene. Here, we present a method of creating highly-collimated electron beams in graphene based on collinear pairs of slits, with absorptive sidewalls between the slits. By this method, we achieve beams with angular width 18 degrees or narrower, and transmission matching semiclassical predictions.
Quantum coherent transport of Dirac fermions in a mesoscopic nanowire of the 3D topological insulator Bi2Se3 is studied in the weak-disorder limit. At very low temperatures, many harmonics are evidenced in the Fourier transform of Aharonov-Bohm oscil
We study the energy of quasi-particles in graphene within the Hartree-Fock approximation. The quasi-particles are confined via an inhomogeneous magnetic field and interact via the Coulomb potential. We show that the associated functional has a minimi
The dynamical approach is applied to ballistic transport in mesoscopic graphene samples of length L and contact potential U. At times shorter than both relevant time scales, the flight time and hslash/U, the major effect of the electric field is to c
Quantum point contacts (QPCs) are cornerstones of mesoscopic physics and central building blocks for quantum electronics. Although the Fermi wave-length in high-quality bulk graphene can be tuned up to hundreds of nanometers, the observation of quant
In quantizing magnetic fields, graphene superlattices exhibit a complex fractal spectrum often referred to as the Hofstadter butterfly. It can be viewed as a collection of Landau levels that arise from quantization of Brown-Zak minibands recurring at