ﻻ يوجد ملخص باللغة العربية
We present Magellan/IMACS spectroscopy of the recently-discovered Milky Way satellite Eridanus II (Eri II). We identify 28 member stars in Eri II, from which we measure a systemic radial velocity of $v_{rm hel} = 75.6 pm 1.3~mbox{(stat.)} pm 2.0~mbox{(sys.)}~mathrm{km,s^{-1}}$ and a velocity dispersion of $6.9^{+1.2}_{-0.9}~mathrm{km,s^{-1}}$. Assuming that Eri~II is a dispersion-supported system in dynamical equilibrium, we derive a mass within the half-light radius of Eri II is $1.2^{+0.4}_{-0.3} times 10^{7}~mathrm{M_odot}$, indicating a mass-to-light ratio of $420^{+210}_{-140}~mathrm{M_odot}/mathrm{L_odot}$ and confirming that it is a dark matter-dominated dwarf galaxy. From the equivalent width measurements of the CaT lines of 16 red giant member stars, we derive a mean metallicity of ${rm [Fe/H]} = -2.38 pm 0.13$ and a metallicity dispersion of $sigma_{rm [Fe/H]} = 0.47 ^{+0.12}_{-0.09}$. The velocity of Eri II in the Galactic Standard of Rest frame is $v_{rm GSR} = -66.6~mathrm{km,s^{-1}}$, indicating that either Eri II is falling into the Milky Way potential for the first time or it has passed the apocenter of its orbit on a subsequent passage. At a Galactocentric distance of $sim$370 kpc, Eri II is one of the Milky Ways most distant satellites known. Additionally, we show that the bright blue stars previously suggested to be a young stellar population are not associated with Eri II. The lack of gas and recent star formation in Eri II is surprising given its mass and distance from the Milky Way, and may place constraints on models of quenching in dwarf galaxies and on the distribution of hot gas in the Milky Way halo. Furthermore, the large velocity dispersion of Eri II can be combined with the existence of a central star cluster to constrain MACHO dark matter with mass $gtrsim10~mathrm{M_odot}$.
We present Magellan/IMACS spectroscopy of the recently discovered Milky Way satellite Tucana III (Tuc III). We identify 26 member stars in Tuc III, from which we measure a mean radial velocity of v_hel = -102.3 +/- 0.4 (stat.) +/- 2.0 (sys.) km/s, a
We analyse the orbital kinematics of the Milky Way (MW) satellite system utilizing the latest systemic proper motions for 38 satellites based on data from Gaia Data Release 2. Combining these data with distance and line-of-sight velocity measurements
We present the Stage II results from the ongoing Satellites Around Galactic Analogs (SAGA) Survey. Upon completion, the SAGA Survey will spectroscopically identify satellite galaxies brighter than $ M_{r,o} = -12.3 $ around 100 Milky Way (MW) analogs
We report the results of a systematic search for ultra-faint Milky Way satellite galaxies using data from the Dark Energy Survey (DES) and Pan-STARRS1 (PS1). Together, DES and PS1 provide multi-band photometry in optical/near-infrared wavelengths ove
We revisit the well known discrepancy between the observed number of Milky Way (MW) dwarf satellite companions and the predicted population of cold dark matter (CDM) sub-halos, in light of the dozen new low luminosity satellites found in SDSS imaging