ﻻ يوجد ملخص باللغة العربية
The molecular mechanism of ion channel gating and substrate modulation is elusive for many voltage gated ion channels, such as eukaryotic sodium ones. The understanding of channel functions is a pressing issue in molecular biophysics and biology. Mathematical modeling, computation and analysis of membrane channel charge transport have become an emergent field and give rise to significant contributions to our understanding of ion channel gating and function. This review summarizes recent progresses and outlines remaining challenges in mathematical modeling, simulation and analysis of ion channel charge transport. One of our focuses is the Poisson-Nernst-Planck (PNP) model and its generalizations. Specifically, the basic framework of the PNP system and some of its extensions, including size effects, ion-water interactions, coupling with density functional theory and relation to fluid flow models. A reduced theory, the Poisson- Boltzmann-Nernst-Planck (PBNP) model, and a differential geometry based ion transport model are also discussed. For proton channel, a multiscale and multiphysics Poisson-Boltzmann-Kohn-Sham (PBKS) model is presented. We show that all of these ion channel models can be cast into a unified variational multiscale framework with a macroscopic continuum domain of the solvent and a microscopic discrete domain of the solute. The main strategy is to construct a total energy functional of a charge transport system to encompass the polar and nonpolar free energies of solvation and chemical potential related energies. Current computational algorithms and tools for numerical simulations and results from mathematical analysis of ion channel systems are also surveyed.
The deadly coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has gone out of control globally. Despite much effort by scientists, medical experts, and society in general, the slow prog
This chapter reviews the differential geometry-based solvation and electrolyte transport for biomolecular solvation that have been developed over the past decade. A key component of these methods is the differential geometry of surfaces theory, as ap
After a brief review of the protein folding quantum theory and a short discussion on its experimental evidences the mechanism of glucose transport across membrane is studied from the point of quantum conformational transition. The structural variatio
Understanding protein folding has been one of the great challenges in biochemistry and molecular biophysics. Over the past 50 years, many thermodynamic and kinetic studies have been performed addressing the stability of globular proteins. In comparis
Background: Since the invention of next-generation RNA sequencing (RNA-seq) technologies, they have become a powerful tool to study the presence and quantity of RNA molecules in biological samples and have revolutionized transcriptomic studies. The a