ﻻ يوجد ملخص باللغة العربية
Strain tuning is increasingly being recognized as a clean tuning parameter to induce novel behavior in quantum matter. Motivated by the possibility of straining graphene up to $20$ percent, we investigate novel quantum criticality due to interplay between strain-induced anisotropic band structure and critical antiferromagnetic spin fluctuations (AFSF) in this setting. We detail how this interplay drives $(i)$ a quantum phase transition (QPT) between the Dirac-semimetal-incoherent pseudogapped metal-correlated insulator as a function of strain ($epsilon$), and $(ii)$ critical AFSF-driven divergent nematic susceptibility near critical strain ($epsilon_{c}$) manifesting as critical singularities in magneto-thermal expansion and Gruneisen co-efficients. The correlated band insulator at large strain affords realization of a two-dimensional dimerized spin-singlet state due to this interplay, and we argue how doping such an insulator can lead to a spin-charge separated metal, leading to anomalous metallicity and possible unconventional superconductivity. On a wider front, our work serves to illustrate the range of novel states realizable by strain-tuning quantum materials.
We examine the exchange Hamiltonian for magnetic adatoms in graphene with localized inner shell states. On symmetry grounds, we predict the existence of a class of orbitals that lead to a distinct class of quantum critical points in graphene, where t
This conference summary and outlook provides a personal overview of the topics and themes of the August 2009 Dresden meeting on quantum criticality and novel phases. The dichotomy between the local moment and the itinerant views of magnetism is revis
Investigation of materials that exhibit quantum phase transition provides valuable insights into fundamental problems in physics. We present neutron scattering under pressure in a triangular-lattice antiferromagnet which has a quantum disorder in the
The quantum Hall effect in curved space has been the subject of many theoretical investigations in the past, but devising a physical system to observe this effect is hard. Many works have indicated that electronic excitations in strained graphene rea
We study the role of long-range electron-electron interactions in a system of two-dimensional anisotropic Dirac fermions, which naturally appear in uniaxially strained graphene, graphene in external potentials, some strongly anisotropic topological i