ﻻ يوجد ملخص باللغة العربية
The reported diffusion constants for hydrogen in silicon vary over six orders of magnitude. This spread in measured values is caused by the different concentrations of defects in the silicon that has been studied. Hydrogen diffusion is slowed down as it interacts with impurities. By changing the material properties such as the crystallinity, doping type and impurity concentrations, the diffusivity of hydrogen can be changed by several orders of magnitude. In this study the influence of the hydrogen concentration on the temperature dependence of the diffusion in high energy proton implanted silicon is investigated. We show that the Arrhenius parameters, which describe this temperature dependence decrease with increasing hydrogen concentration. We propose a model where the relevant defects that mediate hydrogen diffusion become saturated with hydrogen at high concentrations. When the defects that provide hydrogen with the lowest energy positions in the lattice are saturated, hydrogen resides at energetically less favorable positions and this increases the diffusion of hydrogen through the crystal. Furthermore, we present a survey of different studies on the diffusion of hydrogen. We observed a correlation of the Arrhenius parameters calculated in those studies, leading to a modification of the Arrhenius equation for the diffusion of hydrogen in silicon.
Defects in crystalline silicon consisting of a silicon self-interstitial atom and one, two, three, or four hydrogen atoms are studied within density-functional theory (DFT). We search for low-energy defects by starting from an ensemble of structures
We present an accurate study of the static-nucleus electronic energy band gap of solid molecular hydrogen at high pressure. The excitonic and quasiparticle gaps of the $C2/c$, $Pc$, $Pbcn$, and $P6_3/m$ structures at pressures of 250, 300, and 350~GP
We use the diffusion quantum Monte Carlo to revisit the enthalpy-pressure phase diagram of the various products from the different proposed decompositions of H$_2$S at pressures above 150~GPa. Our results entails a revision of the ground-state enthal
Nuclear quantum effects (NQEs) on the structures and transport properties of dense liquid hydrogen at densities of 10-100 g/cm3 and temperatures of 0.1-1 eV are fully assessed using textit{ab initio} path-integral molecular dynamics simulations. With
We report a first principles systematic study of atomic, electronic, and magnetic properties of hydrogen saturated silicon nanowires (H-SiNW) which are doped by transition metal (TM) atoms placed at various interstitial sites. Our results obtained wi