ﻻ يوجد ملخص باللغة العربية
A general asymptotic theory is given for the panel data AR(1) model with time series independent in different cross sections. The theory covers the cases of stationary process, nearly non-stationary process, unit root process, mildly integrated, mildly explosive and explosive processes. It is assumed that the cross-sectional dimension and time-series dimension are respectively $N$ and $T$. The results in this paper illustrate that whichever the process is, with an appropriate regularization, the least squares estimator of the autoregressive coefficient converges to a normal distribution with rate at least $O(N^{-1/3})$. Since the variance is the key to characterize the normal distribution, it is important to discuss the variance of the least squares estimator. We will show that when the autoregressive coefficient $rho$ satisfies $|rho|<1$, the variance declines at the rate $O((NT)^{-1/2})$, while the rate changes to $O(N^{-1/2}T^{-1})$ when $rho=1$ and $O(N^{-1/2}rho^{-T+2})$ when $|rho|>1$. $rho=1$ is the critical point where the convergence rate changes radically. The transition process is studied by assuming $rho$ depending on $T$ and going to $1$. An interesting phenomenon discovered in this paper is that, in the explosive case, the least squares estimator of the autoregressive coefficient has a standard normal limiting distribution in panel data case while it may not has a limiting distribution in univariate time series case.
This paper presents a simple method for carrying out inference in a wide variety of possibly nonlinear IV models under weak assumptions. The method is non-asymptotic in the sense that it provides a finite sample bound on the difference between the tr
We consider the inference problem for parameters in stochastic differential equation models from discrete time observations (e.g. experimental or simulation data). Specifically, we study the case where one does not have access to observations of the
We derive Laplace-approximated maximum likelihood estimators (GLAMLEs) of parameters in our Graph Generalized Linear Latent Variable Models. Then, we study the statistical properties of GLAMLEs when the number of nodes $n_V$ and the observed times of
Instrumental variable is an essential tool for addressing unmeasured confounding in observational studies. Two stage predictor substitution (2SPS) estimator and two stage residual inclusion(2SRI) are two commonly used approaches in applying instrumen
In this Letter, we propose a low-complexity estimator for the correlation coefficient based on the signed $operatorname{AR}(1)$ process. The introduced approximation is suitable for implementation in low-power hardware architectures. Monte Carlo simu