ﻻ يوجد ملخص باللغة العربية
Alternating Direction Method of Multipliers (ADMM) is a popular method in solving Machine Learning problems. Stochastic ADMM was firstly proposed in order to reduce the per iteration computational complexity, which is more suitable for big data problems. Recently, variance reduction techniques have been integrated with stochastic ADMM in order to get a fast convergence rate, such as SAG-ADMM and SVRG-ADMM,but the convergence is still suboptimal w.r.t the smoothness constant. In this paper, we propose a new accelerated stochastic ADMM algorithm with variance reduction, which enjoys a faster convergence than all the other stochastic ADMM algorithms. We theoretically analyze its convergence rate and show its dependence on the smoothness constant is optimal. We also empirically validate its effectiveness and show its priority over other stochastic ADMM algorithms.
Stochastic gradient Langevin dynamics (SGLD) has gained the attention of optimization researchers due to its global optimization properties. This paper proves an improved convergence property to local minimizers of nonconvex objective functions using
In this paper, we develop a symmetric accelerated stochastic Alternating Direction Method of Multipliers (SAS-ADMM) for solving separable convex optimization problems with linear constraints. The objective function is the sum of a possibly nonsmooth
The variance reduction class of algorithms including the representative ones, SVRG and SARAH, have well documented merits for empirical risk minimization problems. However, they require grid search to tune parameters (step size and the number of iter
Variance reduction (VR) methods for finite-sum minimization typically require the knowledge of problem-dependent constants that are often unknown and difficult to estimate. To address this, we use ideas from adaptive gradient methods to propose AdaSV
An inexact accelerated stochastic Alternating Direction Method of Multipliers (AS-ADMM) scheme is developed for solving structured separable convex optimization problems with linear constraints. The objective function is the sum of a possibly nonsmoo