ترغب بنشر مسار تعليمي؟ اضغط هنا

Detecting Koszulness and related homological properties from the algebra structure of Koszul homology

86   0   0.0 ( 0 )
 نشر من قبل Peder Thompson
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Let $k$ be a field and $R$ a standard graded $k$-algebra. We denote by $operatorname{H}^R$ the homology algebra of the Koszul complex on a minimal set of generators of the irrelevant ideal of $R$. We discuss the relationship between the multiplicative structure of $operatorname{H}^R$ and the property that $R$ is a Koszul algebra. More generally, we work in the setting of local rings and we show that certain conditions on the multiplicative structure of Koszul homology imply strong homological properties, such as existence of certain Golod homomorphisms, leading to explicit computations of Poincare series. As an application, we show that the Poincare series of all finitely generated modules over a stretched Cohen-Macaulay local ring are rational, sharing a common denominator.



قيم البحث

اقرأ أيضاً

We investigate various module-theoretic properties of Koszul homology under mild conditions. These include their depth, $S_2$-property and their Bass numbers
Given a Serre class $mathcal{S}$ of modules, we compare the containment of the Koszul homology, Ext modules, Tor modules, local homology, and local cohomology in $mathcal{S}$ up to a given bound $s geq 0$. As some applications, we give a full charact erization of noetherian local homology modules. Further, we establish a comprehensive vanishing result which readily leads to the formerly known descriptions of the numerical invariants width and depth in terms of Koszul homology, local homology, and local cohomology. Also, we immediately recover a few renowned vanishing criteria scattered about the literature.
We show that the Koszul homology algebra of the second Veronese subalgebra of a polynomial ring over a field of characteristic zero is generated, as an algebra, by the homology classes corresponding to the syzygies of the lowest linear strand.
This work concerns the Koszul complex $K$ of a commutative noetherian local ring $R$, with its natural structure as differential graded $R$-algebra. It is proved that under diverse conditions, involving the multiplicative structure of $H(K)$, any dg $R$-algebra automorphism of $K$ induces the identity map on $H(K)$. In such cases, it is possible to define an action of the automorphism group of $R$ on $H(K)$. On the other hand, numerous rings are described for which $K$ has automorphisms that do not induce the identity on $H(K)$. For any $R$, it is shown that the group of automorphisms of $H(K)$ induced by automorphisms of $K$ is abelian.
125 - Ezra Miller 2019
The commutative and homological algebra of modules over posets is developed, as closely parallel as possible to the algebra of finitely generated modules over noetherian commutative rings, in the direction of finite presentations, primary decompositi ons, and resolutions. Interpreting this finiteness in the language of derived categories of subanalytically constructible sheaves proves two conjectures due to Kashiwara and Schapira concerning sheaves with microsupport in a given cone. The motivating case is persistent homology of arbitrary filtered topological spaces, especially the case of multiple real parameters. The algebraic theory yields computationally feasible, topologically interpretable data structures, in terms of birth and death of homology classes, for persistent homology indexed by arbitrary posets. The exposition focuses on the nature and ramifications of a suitable finiteness condition to replace the noetherian hypothesis. The tameness condition introduced for this purpose captures finiteness for variation in families of vector spaces indexed by posets in a way that is characterized equivalently by distinct topological, algebraic, combinatorial, and homological manifestations. Tameness serves both the theoretical and computational purposes: it guarantees finite primary decompositions, as well as various finite presentations and resolutions all related by a syzygy theorem, and the data structures thus produced are computable in addition to being interpretable. The tameness condition and its resulting theory are new even in the finitely generated discrete setting, where being tame is materially weaker than being noetherian.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا