ﻻ يوجد ملخص باللغة العربية
A re-entrant manufacturing system producing a large number of items and involving many steps can be approximately modeled by a hyperbolic partial differential equation (PDE) according to mass conservation law with respect to a continuous density of items on a production process. The mathematic model is a typical nonlinear and nonlocal PDE and the cycle time depends nonlinearly on the work in progress. However, the nonlinearity brings mathematic and engineering difficulties in practical application. In this work, we address the optimal control based on the linearized system model and in order to improve the model and control accuracy, a modified system model taking into account the re-entrant degree of the product is utilized to reflect characteristics of small-scale and large-scale multiple re-entrant manufacturing systems. In this work, we solve the optimal output reference tracking problem through combination of variation approach and state feedback internal model control (IMC) method. Numerical example on optimal boundary influx for step-like demand rate is presented. In particular, the demand rates are generated by an known exosystem.
We consider a production-inventory control model with finite capacity and two different production rates, assuming that the cumulative process of customer demand is given by a compound Poisson process. It is possible at any time to switch over from t
Collective migration of animals in a cohesive group is rendered possible by a strategic distribution of tasks among members: some track the travel route, which is time and energy-consuming, while the others follow the group by interacting among thems
Optimization problems governed by Allen-Cahn systems including elastic effects are formulated and first-order necessary optimality conditions are presented. Smooth as well as obstacle potentials are considered, where the latter leads to an MPEC. Nume
We present a data-driven optimal control approach which integrates the reported partial data with the epidemic dynamics for COVID-19. We use a basic Susceptible-Exposed-Infectious-Recovered (SEIR) model, the model parameters are time-varying and lear
This paper describes a procedure that system developers can follow to translate typical mathematical representations of linearized control systems into logic theories. These theories are then used to verify system requirements and find constraints on