ترغب بنشر مسار تعليمي؟ اضغط هنا

Disconnected diagrams with twisted-mass fermions

232   0   0.0 ( 0 )
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The latest results from the Twisted-Mass collaboration on disconnected diagrams at the physical value of the pion mass are presented. In particular, we focus on the sigma terms, the axial charges and the momentum fraction, all of them for the nucleon. A detailed error analysis for each observable follows, showing the strengths and weaknesses of the one-end trick. Alternatives are discussed.



قيم البحث

اقرأ أيضاً

We discuss the recent progress in extracting partonic functions from the quasi-distribution approach, using twisted mass fermions. This concerns, among others, the investigation of several sources of systematic effects. Their careful analysis is a pr erequisite to obtain precise determinations of PDFs from the lattice with realistic estimates of all uncertainties. In these proceedings, we shortly discuss systematic effects in the matching procedure. Moreover, we present preliminary results from our new simulations at the physical point. They involve, additionally, the dynamical strange and charm quarks, as well as a larger volume and a smaller lattice spacing than in our previous computations. In addition, we show first results from computations of generalized parton distributions (GPDs) in the quasi-distribution framework.
We summarize four contributions about dynamical twisted mass fermions. The resulting report covers results for N_f=2 obtained from three different gauge actions, namely the standard Wilson plaquette gauge action, the DBW2 and the tree-level Symanzik improved gauge action. In addition, first results for N_f=2+1+1 flavours of twisted mass fermions are discussed.
249 - O. Bar , S. Necco , A. Shindler 2010
We investigate the leading lattice spacing effects in mesonic two-point correlators computed with twisted mass Wilson fermions in the epsilon-regime. By generalizing the procedure already introduced for the untwisted Wilson chiral effective theory, w e extend the continuum chiral epsilon expansion to twisted mass WChPT. We define different regimes, depending on the relative power counting for the quark masses and the lattice spacing. We explicitly compute, for arbitrary twist angle, the leading O(a^2) corrections appearing at NLO in the so-called GSM^* regime. As in untwisted WChPT, we find that in this situation the impact of explicit chiral symmetry breaking due to lattice artefacts is strongly suppressed. Of particular interest is the case of maximal twist, which corresponds to the setup usually adopted in lattice simulations with twisted mass Wilson fermions. The formulae we obtain can be matched to lattice data to extract physical low energy couplings, and to estimate systematic uncertainties coming from discretization errors.
We present results on the mass of the nucleon and the Delta using two dynamical degenerate twisted mass quarks and the tree-level Symanzik improved gauge action. The evaluation is performed at four quark masses corresponding to a pion mass in the ran ge of about 300-600 MeV on lattices of 2.1-2.7 fm. We check for cut-off effects by evaluating these baryon masses on lattices of spatial size 2.1 fm at beta=3.9 and beta=4.05 and on a lattice of 2.4 fm at beta=3.8. The values we find are compatible within our statistical errors. Lattice results are extrapolated to the physical limit using continuum chiral perturbation theory. Performing a combined fit to our lattice data at beta=3.9 and beta=4.05 we find a nucleon mass of 964pm 28 (stat.) pm 8 (syst.) MeV. The nucleon mass at the physical point provides an independent determination of the lattice spacing. Using heavy baryon chiral perturbation theory at O(p^3) we find a_{beta=3.9}=0.0890pm 0.0039(stat.) pm 0.0014(syst.) fm, and a_{beta=4.05}= 0.0691pm 0.0034(stat.) pm 0.0010(syst.) fm, in good agreement with the values determined from the pion decay constant. Isospin violating lattice artifacts in the Delta-system are found to be compatible with zero for the values of the lattice spacings used in this work. Performing a combined fit to our lattice data at beta=3.9 and beta=4.05 we find for the masses of the Delta^{++,-} and Delta^{+,0} 1316 pm 60 (stat.) MeV and 1330 pm 74 (stat.) MeV respectively. We confirm that in the continuum limit they are also degenerate.
244 - C. Alexandrou 2013
We present results on the nucleon form factors, momentum fraction and helicity moment for $N_f=2$ and $N_f=2+1+1$ twisted mass fermions for a number of lattice volumes and lattice spacings. First results for a new $N_f=2$ ensemble at the physical pio n mass are also included. The implications of these results on the spin content of the nucleon are discussed taking into account the disconnected contributions at one pion mass.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا