ﻻ يوجد ملخص باللغة العربية
In this work, an efficient numerical scheme is presented for seismic blind deconvolution in a multichannel scenario. The proposed method iterate with wo steps: first, wavelet estimation across all channels and second, refinement of the reflectivity estimate simultaneously in all channels using sparse deconvolution. The reflectivity update step is formulated as a basis pursuit denoising problem and a sparse solution is obtained with the spectral projected-gradient algorithm - faithfulness to the recorded traces is constrained by the measured noise level. Wavelet re-estimation has a closed form solution when performed in the frequency domain by finding the minimum energy wavelet common to all channels. Nothing is assumed known about the wavelet apart from its time duration. In tests with both synthetic and real data, the method yields sparse reflectivity series and stable wavelet estimates results compared to existing methods with significantly less computational effort.
Multichannel blind deconvolution is the problem of recovering an unknown signal $f$ and multiple unknown channels $x_i$ from their circular convolution $y_i=x_i circledast f$ ($i=1,2,dots,N$). We consider the case where the $x_i$s are sparse, and con
In the blind deconvolution problem, we observe the convolution of an unknown filter and unknown signal and attempt to reconstruct the filter and signal. The problem seems impossible in general, since there are seemingly many more unknowns than knowns
We revisit the Blind Deconvolution problem with a focus on understanding its robustness and convergence properties. Provable robustness to noise and other perturbations is receiving recent interest in vision, from obtaining immunity to adversarial at
We study the solution of the system of equations describing the dynamical evolution of spontaneous ruptures generated in a prestressed elastic-gravitational deforming body and governed by rate and state friction laws. We propose an iterative coupling
We propose a blind deconvolution method for signals on graphs, with the exact sparseness constraint for the original signal. Graph blind deconvolution is an algorithm for estimating the original signal on a graph from a set of blurred and noisy measu