ﻻ يوجد ملخص باللغة العربية
Semiconductor InAs/GaAs quantum dots grown by the Stranski-Krastanov method are among the leading candidates for the deterministic generation of polarization entangled photon pairs. Despite remarkable progress in the last twenty years, many challenges still remain for this material, such as the extremely low yield (<1% quantum dots can emit entangled photons), the low degree of entanglement, and the large wavelength distribution. Here we show that, with an emerging family of GaAs/AlGaAs quantum dots grown by droplet etching and nanohole infilling, it is possible to obtain a large ensemble (close to 100%) of polarization-entangled photon emitters on a wafer without any post-growth tuning. Under pulsed resonant two-photon excitation, all measured quantum dots emit single pairs of entangled photons with ultra-high purity, high degree of entanglement (fidelity up to F=0.91, with a record high concurrence C=0.90), and ultra-narrow wavelength distribution at rubidium transitions. Therefore, a solid-state quantum repeater - among many other key enabling quantum photonic elements - can be practically implemented with this new material.
The ultimate goal of quantum information science is to build a global quantum network, which enables quantum resources to be distributed and shared between remote parties. Such quantum network can be realized by all fiber elements, which takes advant
The desiderata for an ideal photon source are high brightness, high single-photon purity, and high indistinguishability. Defining brightness at the first collection lens, these properties have been simultaneously demonstrated with solid-state sources
A simplified theory for the wavepackets of the photons emitted during the read process of a quantum memory formed by cold atoms is provided. We arrive at analytical expressions for the single- and double-photon emissions, evidencing superradiant feat
Single-photons are key elements of many future quantum technologies, be it for the realisation of large-scale quantum communication networks for quantum simulation of chemical and physical processes or for connecting quantum memories in a quantum com
We discuss the application of dipole blockade techniques for the preparation of single atom and single photon sources. A deterministic protocol is given for loading a single atom in an optical trap as well as ejecting a controlled number of atoms in