ﻻ يوجد ملخص باللغة العربية
It has been argued that the recently detected ring-down gravity waveforms could be indicative only of the presence of light rings in a horizonless object, such as a surgical Schwarzschild wormhole, with the frequencies differing drastically from those of the horizon quasinormal mode frequencies $omega _{text{QNM}}$ at late times. While the possibility of such a horizonless alternative is novel by itself, we show by the example of Ellis-Bronnikov wormhole that the differences in $omega _{text{QNM}}$ in the eikonal limit (large $l$) need not be drastic. This result will be reached by exploiting the connection between $omega _{text{QNM}}$ and the Bozza strong field lensing parameters. We shall also show that the lensing observables of the Ellis-Bronnikov wormhole can also be very close to those of a black hole (say, SgrA$^{ast }$ hosted by our galaxy) of the same mass. This situation indicates that the ring-down frequencies and lensing observables of the Ellis-Bronnikov wormhole can remarkably mimic those of a black hole. The constraint on wormhole parameter $gamma $ imposed by experimental accuracy is briefly discussed. We also provide independent arguments supporting the stability of the Ellis-Bronnikov wormhole proven recently.
Recent trend of research indicates that not only massive but also massless (asymptotic Newtonian mass zero) wormholes can reproduce post-merger initial ring-down gravitational waves characteristic of black hole horizon. In the massless case, it is th
We first advance a mathematical novelty that the three geometrically and topologically distinct objects mentioned in the title can be exactly obtained from the Jordan frame vacuum Brans I solution by a combination of coordinate transformations, trigo
Current ground-based gravitational wave detectors are tuned to capture the collision of compact objects such as stellar origin black holes and neutron stars; over 20 such events have been published to date. Theoretically, however, more exotic compact
Stable massless wormholes are theoretically interesting in their own right as well as for astrophysical applications, especially as galactic halo objects. Therefore, the study of gravitational lensing observables for such objects is of importance, an
The problem of bending and scattering of light rays passing outside from the entrance to a wormhole with zero gravitational mass is considered. The process of ray capture by a wormhole as well as the process of formation of a shadow when illuminated