ﻻ يوجد ملخص باللغة العربية
Maximum independent set from a given set $D$ of unit disks intersecting a horizontal line can be solved in $O(n^2)$ time and $O(n^2)$ space. As a corollary, we design a factor 2 approximation algorithm for the maximum independent set problem on unit disk graph which takes both time and space of $O(n^2)$. The best known factor 2 approximation algorithm for this problem runs in $O(n^2 log n)$ time and takes $O(n^2)$ space [Jallu and Das 2016, Das et al. 2016].
We improve the running times of $O(1)$-approximation algorithms for the set cover problem in geometric settings, specifically, covering points by disks in the plane, or covering points by halfspaces in three dimensions. In the unweighted case, Agarwa
We give a polynomial-time constant-factor approximation algorithm for maximum independent set for (axis-aligned) rectangles in the plane. Using a polynomial-time algorithm, the best approximation factor previously known is $O(loglog n)$. The results
A graph $G$ with $n$ vertices is called an outerstring graph if it has an intersection representation of a set of $n$ curves inside a disk such that one endpoint of every curve is attached to the boundary of the disk. Given an outerstring graph repre
In 1960, Asplund and Grunbaum proved that every intersection graph of axis-parallel rectangles in the plane admits an $O(omega^2)$-coloring, where $omega$ is the maximum size of a clique. We present the first asymptotic improvement over this six-deca
In this article, we study a generalized version of the maximum independent set and minimum dominating set problems, namely, the maximum $d$-distance independent set problem and the minimum $d$-distance dominating set problem on unit disk graphs for a