ترغب بنشر مسار تعليمي؟ اضغط هنا

On the Diffusion Geometry of Graph Laplacians and Applications

155   0   0.0 ( 0 )
 نشر من قبل Stefan Steinerberger
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study directed, weighted graphs $G=(V,E)$ and consider the (not necessarily symmetric) averaging operator $$ (mathcal{L}u)(i) = -sum_{j sim_{} i}{p_{ij} (u(j) - u(i))},$$ where $p_{ij}$ are normalized edge weights. Given a vertex $i in V$, we define the diffusion distance to a set $B subset V$ as the smallest number of steps $d_{B}(i) in mathbb{N}$ required for half of all random walks started in $i$ and moving randomly with respect to the weights $p_{ij}$ to visit $B$ within $d_{B}(i)$ steps. Our main result is that the eigenfunctions interact nicely with this notion of distance. In particular, if $u$ satisfies $mathcal{L}u = lambda u$ on $V$ and $$ B = left{ i in V: - varepsilon leq u(i) leq varepsilon right} eq emptyset,$$ then, for all $i in V$, $$ d_{B}(i) log{left( frac{1}{|1-lambda|} right) } geq log{left( frac{ |u(i)| }{|u|_{L^{infty}}} right)} - log{left(frac{1}{2} + varepsilonright)}.$$ $d_B(i)$ is a remarkably good approximation of $|u|$ in the sense of having very high correlation. The result implies that the classical one-dimensional spectral embedding preserves particular aspects of geometry in the presence of clustered data. We also give a continuous variant of the result which has a connection to the hot spots conjecture.



قيم البحث

اقرأ أيضاً

We discuss several geometric conditions guaranteeing the finiteness or the infiniteness of the discrete spectrum for Robin Laplacians on conical domains.
We prove various estimates for the first eigenvalue of the magnetic Dirichlet Laplacian on a bounded domain in two dimensions. When the magnetic field is constant, we give lower and upper bounds in terms of geometric quantities of the domain. We furt hermore prove a lower bound for the first magnetic Neumann eigenvalue in the case of constant field.
Let $Omega_-$ and $Omega_+$ be two bounded smooth domains in $mathbb{R}^n$, $nge 2$, separated by a hypersurface $Sigma$. For $mu>0$, consider the function $h_mu=1_{Omega_-}-mu 1_{Omega_+}$. We discuss self-adjoint realizations of the operator $L_{mu }=- ablacdot h_mu abla$ in $L^2(Omega_-cupOmega_+)$ with the Dirichlet condition at the exterior boundary. We show that $L_mu$ is always essentially self-adjoint on the natural domain (corresponding to transmission-type boundary conditions at the interface $Sigma$) and study some properties of its unique self-adjoint extension $mathcal{L}_mu:=overline{L_mu}$. If $mu e 1$, then $mathcal{L}_mu$ simply coincides with $L_mu$ and has compact resolvent. If $n=2$, then $mathcal{L}_1$ has a non-empty essential spectrum, $sigma_mathrm{ess}(mathcal{L}_{1})={0}$. If $nge 3$, the spectral properties of $mathcal{L}_1$ depend on the geometry of $Sigma$. In particular, it has compact resolvent if $Sigma$ is the union of disjoint strictly convex hypersurfaces, but can have a non-empty essential spectrum if a part of $Sigma$ is flat. Our construction features the method of boundary triplets, and the problem is reduced to finding the self-adjoint extensions of a pseudodifferential operator on $Sigma$. We discuss some links between the resulting self-adjoint operator $mathcal{L}_mu$ and some effects observed in negative-index materials.
We consider the problem of geometric optimization of the lowest eigenvalue for the Laplacian on a compact, simply-connected two-dimensional manifold with boundary subject to an attractive Robin boundary condition. We prove that in the sub-class of ma nifolds with the Gauss curvature bounded from above by a constant $K_circ ge 0$ and under the constraint of fixed perimeter, the geodesic disk of constant curvature $K_circ$ maximizes the lowest Robin eigenvalue. In the same geometric setting, it is proved that the spectral isoperimetric inequality holds for the lowest eigenvalue of the Dirichlet-to-Neumann operator. Finally, we adapt our methods to Robin Laplacians acting on unbounded three-dimensional cones to show that, under a constraint of fixed perimeter of the cross-section, the lowest Robin eigenvalue is maximized by the circular cone.
We demonstrate how to approximate one-dimensional Schrodinger operators with $delta$-interaction by a Neumann Laplacian on a narrow waveguide-like domain. Namely, we consider a domain consisting of a straight strip and a small protuberance with room- and-passage geometry. We show that in the limit when the perpendicular size of the strip tends to zero, and the room and the passage are appropriately scaled, the Neumann Laplacian on this domain converges in (a kind of) norm resolvent sense to the above singular Schrodinger operator. Also we prove Hausdorff convergence of the spectra. In both cases estimates on the rate of convergence are derived.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا