ﻻ يوجد ملخص باللغة العربية
We investigated r-process nucleosynthesis in magneto-rotational supernovae, based on a new explosion mechanism induced by the magneto-rotational instability. A series of axisymmetric magneto-hydrodynamical simulations with detailed microphysics including neutrino heating is performed, numerically resolving the magneto-rotational instability. Neutrino-heating dominated explosions, enhanced by magnetic fields, showed mildly neutron-rich ejecta producing nuclei up to $A sim 130$ (i.e. the weak r-process), while explosion models with stronger magnetic fields reproduce a solar-like r-process pattern. More commonly seen abundance patterns in our models are in between the weak and regular r-process, producing lighter and intermediate mass nuclei. These {it intermediate r-processes} exhibit a variety of abundance distributions, compatible with several abundance patterns in r-process-enhanced metal-poor stars. The amount of Eu ejecta $sim 10^{-5} M_odot$ in magnetically-driven jets agrees with predicted values in the chemical evolution of early galaxies. In contrast, neutrino-heating dominated explosions have a significant amount of Fe ($^{56}{rm Ni}$) and Zn, comparable to regular supernovae and hypernovae, respectively. These results indicate magneto-rotational supernovae can produce a wide range of heavy nuclei from iron-group to r-process elements, depending on the explosion dynamics.
Bearing in mind the application to core-collapse supernovae, we study nonlinear properties of the magneto-rotational instability (MRI) by means of three- dimensional simulations in the framework of a local shearing box approximation. By changing syst
We conduct a series of numerical experiments into the nature of three-dimensional (3D) hydrodynamics in the postbounce stalled-shock phase of core-collapse supernovae using 3D general-relativistic hydrodynamic simulations of a $27$-$M_odot$ progenito
Core-collapse Supernovae (CCSNe) mark the deaths of stars more massive than about eight times the mass of the sun and are intrinsically the most common kind of catastrophic cosmic explosions. They can teach us about many important physical processes,
Convective instabilities in the advanced stages of nuclear shell burning can play an important role in neutrino-driven supernova explosions. In our previous work, we studied the interaction of vorticity and entropy waves with the supernova shock usin
We have made core-collapse supernova simulations that allow oscillations between electron neutrinos (or their anti particles) with right-handed sterile neutrinos. We have considered a range of mixing angles and sterile neutrino masses including those