ﻻ يوجد ملخص باللغة العربية
We investigate the impact of noise on a two-dimensional simple paradigmatic piecewise-smooth dynamical system. For that purpose we consider the motion of a particle subjected to dry friction and coloured noise. The finite correlation time of the noise provides an additional dimension in phase space, a nontrivial probability current, and thus establishes a proper nonequilibrium regime. Furthermore, the finite noise correlation time allows for the study of stick-slip phenomena which show up as a singular component in the stationary probability density. Analytic insight can be provided by application of the unified coloured noise approximation, developed by Jung and Hanggi (Phys. Rev. A 35, 4464 (R) (1987)). The analysis of probability currents and a closer look at power spectral densities underpin the observed stick-slip transitions which are related with a critical value of the noise correlation time.
We provide an analytic solution to the first-passage time (FPT) problem of a piecewise-smooth stochastic model, namely Brownian motion with dry friction, using two different but closely related approaches which are based on eigenfunction decompositio
The motion of an adiabatic piston under dry friction is investigated to clarify the roles of dry friction in non-equilibrium steady states. We clarify that dry friction can reverse the direction of the piston motion and causes a discontinuity or a cu
We study the dynamics of covariances in a chain of harmonic oscillators with conservative noise in contact with two stochastic Langevin heat baths. The noise amounts to random collisions between nearest-neighbour oscillators that exchange their momen
We investigate piecewise-linear stochastic models as with regards to the probability distribution of functionals of the stochastic processes, a question which occurs frequently in large deviation theory. The functionals that we are looking into in de
It is explained how field-theoretic methods and the dynamic renormalisation group (RG) can be applied to study the universal scaling properties of systems that either undergo a continuous phase transition or display generic scale invariance, both nea