ﻻ يوجد ملخص باللغة العربية
PuCoGa$_5$ has emerged as a prototypical heavy-fermion superconductor, with its transition temperature ($T_csimeq18.5$ K) being the highest amongst such materials. Nonetheless, a clear description as to what drives the superconducting pairing is still lacking, rendered complicated by the notoriously intricate nature of plutoniums 5$f$ valence electrons. Here, we present a detailed $^{69,71}$Ga nuclear quadrupole resonance (NQR) study of PuCoGa$_5$, concentrating on the systems normal state properties near to $T_c$ and aiming to detect distinct signatures of possible pairing mechanisms. In particular, the quadrupole frequency and spin-lattice relaxation rate were measured for the two crystallographically inequivalent Ga sites and for both Ga isotopes, in the temperature range 1.6 K - 300 K. No evidence of significant charge fluctuations is found from the NQR observables. On the contrary, the low-energy dynamics is dominated by anisotropic spin fluctuations with strong, nearly critical, in-plane character, which are effectively identical to the case of the sister compound PuCoIn$_5$. These findings are discussed within the context of different theoretical proposals for the unconventional pairing mechanism in heavy-fermion superconductors.
We report $^{115}$In nuclear quadrupolar resonance (NQR) measurements on the heavy-fermion superconductor PuCoIn$_5$, in the temperature range $0.29{rm K}leq Tleq 75{rm K}$. The NQR parameters for the two crystallographically inequivalent In sites ar
Nuclear quadrupole resonance (NQR) measurements were performed on the heavy fermion superconductor Ce3PtIn11 with Tc = 0.32 K. The temperature dependence of both spin-lattice relaxation rate 1/T1 and NQR spectra evidences the occurrence of two succes
The thermal conductivity $kappa$ of the heavy-fermion superconductor CeIrIn$_5$ was measured as a function of temperature down to $T_c$/8, for current directions perpendicular ($J parallel a$) and parallel ($J parallel c$) to the tetragonal c axis. F
We report $^{115}$In nuclear magnetic resonance (NMR) measurements in CeCoIn$_5$ at low temperature ($T approx 70$ mK) as a function of magnetic field ($H_0$) from 2 T to 13.5 T applied perpendicular to the $hat c$-axis. NMR line shift reveals that b
We report 125Te-NMR studies on a newly discovered heavy fermion superconductor UTe2. Using a single crystal, we have measured the 125Te-NMR Knight shift K and spin-lattice relaxation rate 1/T1 for fields along the three orthorhombic crystal axes. The