ﻻ يوجد ملخص باللغة العربية
With more applications moving to the cloud, cloud providers need to diagnose performance problems in a timely manner. Offline processing of logs is slow and inefficient, and instrumenting the end-host network stack would violate the tenants rights to manage their own virtual machines (VMs). Instead, our Dapper system analyzes TCP performance in real time near the end-hosts (e.g., at the hypervisor, NIC, or top-of-rack switch). Dapper determines whether a connection is limited by the sender (e.g., a slow server competing for shared resources), the network (e.g., congestion), or the receiver (e.g., small receive buffer). Emerging edge devices now offer flexible packet processing at high speed on commodity hardware, making it possible to monitor TCP performance in the data plane, at line rate. We use P4 to prototype Dapper and evaluate our design on real and synthetic traffic. To reduce the data-plane state requirements, we perform lightweight detection for all connections, followed by heavier-weight diagnosis just for the troubled connections.
With the proliferation of mobile computing devices, the demand for continuous network connectivity regardless of physical location has spurred interest in the use of mobile ad hoc networks. Since Transmission Control Protocol (TCP) is the standard ne
In contrast to the classic fashion for designing distributed end-to-end (e2e) TCP schemes for cellular networks (CN), we explore another design space by having the CN assist the task of the transport control. We show that in the emerging cellular arc
Emerging applications -- cloud computing, the internet of things, and augmented/virtual reality -- need responsive, available, secure, ubiquitous, and scalable datacenter networks. Network management currently uses simple, per-packet, data-plane heur
Low-power and lossy networks (LLNs) enable diverse applications integrating many resource-constrained embedded devices, often requiring interconnectivity with existing TCP/IP networks as part of the Internet of Things. But TCP has received little att
Multiple accesses are common for most mobile devices today. This technological advance opens up a new design space for improving the communication performance of mobile devices. Multipath TCP is a TCP extension that enables using multiple network pat