ترغب بنشر مسار تعليمي؟ اضغط هنا

Second-harmonic generation as probe for structural and electronic properties of buried GaP/Si(001) interfaces

102   0   0.0 ( 0 )
 نشر من قبل Jens G\\\"udde
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English
 تأليف K. Brixius




اسأل ChatGPT حول البحث

Optical second-harmonic generation is demonstrated to be a sensitive probe of the buried interface between the lattice matched semiconductors gallium phosphide and silicon with (001) orientation. Rotational anisotropy measurements of SHG from GaP/Si show a strong isotropic component of the response not present for pure Si(001) or GaP(001). The strength of the overlaying anisotropic response directly correlates with the quality of the interface as determined by atomically resolved scanning transmission electron microscopy.Optical second-harmonic generation is demonstrated to be a sensitive probe of the buried interface between the lattice matched semiconductors gallium phosphide and silicon with (001) orientation. Rotational anisotropy measurements of SHG from GaP/Si show a strong isotropic component of the response not present for pure Si(001) or GaP(001). The strength of the overlaying anisotropic response directly correlates with the quality of the interface as determined by atomically resolved scanning transmission electron microscopy. Systematic comparison of samples fabricated with different growth modes in metal organic vapor phase epitaxy reveals that the anisotropy for different polarization combinations can be used as a selective fingerprint for the occurrence of anti-phase domains and twins. This all-optical technique can be applied as an {it in-situ} and non-invasive monitor even during growth. Systematic comparison of samples fabricated with different growth modes in metal organic vapor phase epitaxy reveals that the anisotropy for different polarization combinations can be used as a selective fingerprint for the occurrence of anti-phase domains and twins. This all-optical technique can be applied as an {it in-situ} and non-invasive monitor even during growth.



قيم البحث

اقرأ أيضاً

The mechanism of DC-Electric-Field-Induced Second-Harmonic (EFISH) generation at weakly nonlinear buried Si(001)-SiO$_2$ interfaces is studied experimentally in planar Si(001)-SiO$_2$-Cr MOS structures by optical second-harmonic generation (SHG) spec troscopy with a tunable Ti:sapphire femtosecond laser. The spectral dependence of the EFISH contribution near the direct two-photon $E_1$ transition of silicon is extracted. A systematic phenomenological model of the EFISH phenomenon, including a detailed description of the space charge region (SCR) at the semiconductor-dielectric interface in accumulation, depletion, and inversion regimes, has been developed. The influence of surface quantization effects, interface states, charge traps in the oxide layer, doping concentration and oxide thickness on nonlocal screening of the DC-electric field and on breaking of inversion symmetry in the SCR is considered. The model describes EFISH generation in the SCR using a Green function formalism which takes into account all retardation and absorption effects of the fundamental and second harmonic (SH) waves, optical interference between field-dependent and field-independent contributions to the SH field and multiple reflection interference in the SiO$_2$ layer. Good agreement between the phenomenological model and our recent and new EFISH spectroscopic results is demonstrated. Finally, low-frequency electromodulated EFISH is demonstrated as a useful differential spectroscopic technique for studies of the Si-SiO$_2$ interface in silicon-based MOS structures.
The interface between two different semiconductors is crucial in determining the electronic properties at the heterojunction, therefore novel techniques that can probe these regions are of particular interest. Recently it has been shown that heteroju nctions of two-dimensional transition metal dichalcogenides have sharp and epitaxial interfaces that can be used to the next generation of flexible and on chip optoelectronic devices. Here, we show that second harmonic generation (SHG) can be used as an optical tool to reveal these atomically sharp interfaces in different lateral heterostructures. We observed an enhancement of the SH intensity at the heterojunctions, and showed that is due to a coherent superposition of the SH emission from each material. This constructive interference pattern reveals a phase difference arising from the distinct second-order susceptibilities of both materials at the interface. Our results demonstrate that SHG microscopy is a sensitive characterization technique to unveil nanometric features in layered materials and their heterostructures.
The notion of spontaneous symmetry breaking has been used to describe phase transitions in a variety of physical systems. In crystalline solids, the breaking of certain symmetries, such as mirror symmetry, is difficult to detect unambiguously. Using 1$T$-TaS$_2$, we demonstrate here that rotational-anisotropy second harmonic generation (RA-SHG) is not only a sensitive technique for the detection of broken mirror symmetry, but also that it can differentiate between mirror symmetry-broken structures of opposite planar chirality. We also show that our analysis is applicable to a wide class of different materials with mirror symmetry-breaking transitions. Lastly, we find evidence for bulk mirror symmetry-breaking in the incommensurate charge density wave phase of 1$T$-TaS$_2$. Our results pave the way for RA-SHG to probe candidate materials where broken mirror symmetry may play a pivotal role.
We have made very thin films of LaAlO3 on TiO2 terminated SrTiO3 and have measured the properties of the resulting interface in various ways. Transport measurements show a maximum sheet carrier density of 1016 cm-2 and a mobility around 104 cm2 V-1 s -1. In situ ultraviolet photoelectron spectroscopy (UPS) indicates that for these samples a finite density of states exists at the Fermi level. From the oxygen pressure dependence measured in both transport as well as the UPS, we detail, as reported previously by us, that oxygen vacancies play an important role in the creation of the charge carriers and that these vacancies are introduced by the pulsed laser deposition process used to make the heterointerfaces. Under the conditions studied the effect of LaAlO3 on the carrier density is found to be minimal.
The semiconductor-metal junction is one of the most critical factors for high performance electronic devices. In two-dimensional (2D) semiconductor devices, minimizing the voltage drop at this junction is particularly challenging and important. Despi te numerous studies concerning contact resistance in 2D semiconductors, the exact nature of the buried interface under a three-dimensional (3D) metal remains unclear. Herein, we report the direct measurement of electrical and optical responses of 2D semiconductor-metal buried interfaces using a recently developed metal-assisted transfer technique to expose the buried interface which is then directly investigated using scanning probe techniques. We characterize the spatially varying electronic and optical properties of this buried interface with < 20 nm resolution. To be specific, potential, conductance and photoluminescence at the buried metal/MoS2 interface are correlated as a function of a variety of metal deposition conditions as well as the type of metal contacts. We observe that direct evaporation of Au on MoS2 induces a large strain of ~5% in the MoS2 which, coupled with charge transfer, leads to degenerate doping of the MoS2 underneath the contact. These factors lead to improvement of contact resistance to record values of 138 kohm-um, as measured using local conductance probes. This approach was adopted to characterize MoS2-In/Au alloy interfaces, demonstrating contact resistance as low as 63 kohm-um. Our results highlight that the MoS2/Metal interface is sensitive to device fabrication methods, and provides a universal strategy to characterize buried contact interfaces involving 2D semiconductors.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا