ﻻ يوجد ملخص باللغة العربية
The impact of the intrinsic time-dependent fluctuations in the electrical resistance at the graphene-metal interface or the contact noise, on the performance of graphene field effect transistors, can be as adverse as the contact resistance itself, but remains largely unexplored. Here we have investigated the contact noise in graphene field effect transistors of varying device geometry and contact configuration, with carrier mobility ranging from 5,000 to 80,000$~$cm$^{2}$V$^{-1}$s$^{-1}$. Our phenomenological model for contact noise due to current crowding in purely two dimensional conductors, confirms that the contacts dominate the measured resistance noise in all graphene field effect transistors in the two-probe or invasive four probe configurations, and surprisingly, also in nearly noninvasive four probe (Hall bar) configuration in the high mobility devices. The microscopic origin of contact noise is directly linked to the fluctuating electrostatic environment of the metal-channel interface, which could be generic to two dimensional material-based electronic devices.
We study the contact resistance and the transfer characteristics of back-gated field effect transistors of mono- and bi-layer graphene. We measure specific contact resistivity of ~7kohm*um2 and ~30kohm*um2 for Ni and Ti, respectively. We show that th
We present an atomistic three-dimensional simulation of graphene nanoribbon field effect transistors (GNR-FETs), based on the self-consistent solution of the 3D Poisson and Schroedinger equation with open boundary conditions within the non-equilibriu
Achieving good quality Ohmic contacts to van der Waals materials is a challenge, since at the interface between metal and van der Waals material, different conditions can occur, ranging from the presence of a large energy barrier between the two mate
We have investigated the low-frequency 1/f noise of both suspended and on-substrate graphene field-effect transistors and its dependence on gate voltage, in the temperature range between 300K and 30K. We have found that the noise amplitude away from
With the motivation of improving the performance and reliability of aggressively scaled nano-patterned graphene field-effect transistors, we present the first systematic experimental study on charge and current distribution in multilayer graphene fie