ﻻ يوجد ملخص باللغة العربية
Hypertree decompositions, as well as the more powerful generalized hypertree decompositions (GHDs), and the yet more general fractional hypertree decompositions (FHD) are hypergraph decomposition methods successfully used for answering conjunctive queries and for the solution of constraint satisfaction problems. Every hypergraph H has a width relative to each of these decomposition methods: its hypertree width hw(H), its generalized hypertree width ghw(H), and its fractional hypertree width fhw(H), respectively. It is known that hw(H) <= k can be checked in polynomial time for fixed k, while checking ghw(H) <= k is NP-complete for any k greater than or equal to 3. The complexity of checking fhw(H) <= k for a fixed k has been open for more than a decade. We settle this open problem by showing that checking fhw(H) <= k is NP-complete, even for k=2. The same construction allows us to prove also the NP-completeness of checking ghw(H) <= k for k=2. After proving these hardness results, we identify meaningful restrictions, for which checking for bounded ghw or fhw becomes tractable.
The problem of publishing personal data without giving up privacy is becoming increasingly important. An interesting formalization recently proposed is the k-anonymity. This approach requires that the rows in a table are clustered in sets of size at
Our main result is that every graph $G$ on $nge 10^4r^3$ vertices with minimum degree $delta(G) ge (1 - 1 / 10^4 r^{3/2} ) n$ has a fractional $K_r$-decomposition. Combining this result with recent work of Barber, Kuhn, Lo and Osthus leads to the bes
We prove that for any integer $kgeq 2$ and $varepsilon>0$, there is an integer $ell_0geq 1$ such that any $k$-uniform hypergraph on $n$ vertices with minimum codegree at least $(1/2+varepsilon)n$ has a fractional decomposition into tight cycles of le
The hypervolume indicator is an increasingly popular set measure to compare the quality of two Pareto sets. The basic ingredient of most hypervolume indicator based optimization algorithms is the calculation of the hypervolume contribution of single
By a well known result the treewidth of k-outerplanar graphs is at most 3k-1. This paper gives, besides a rigorous proof of this fact, an algorithmic implementation of the proof, i.e. it is shown that, given a k-outerplanar graph G, a tree decomposit