ﻻ يوجد ملخص باللغة العربية
This work brings together Keldysh non-equilibrium quantum theory and thermodynamics, by showing that a real-time diagrammatic technique is an equivalent of stochastic thermodynamics for non-Markovian quantum machines (heat engines, refrigerators, etc). Symmetries are found between quantum trajectories and their time-reverses on the Keldysh contour, for any interacting quantum system coupled to ideal reservoirs of electrons, phonons or photons. These lead to quantum fluctuation theorems the same as the well-known classical ones (Jarzynski and Crooks equalities, integral fluctuation theorem, etc), whether the systems dynamics are Markovian or not. Some of these are also shown to hold for non-factorizable initial states. The sequential tunnelling approximation and the cotunnelling approximation are both shown to respect the symmetries that ensure the fluctuation theorems. For all initial states, energy conservation ensures that the first law of thermodynamics holds on average, while the above symmetries ensures that the second law of thermodynamics holds on average, even if fluctuations violate it. [ERRATUM added: March 2021]
We show that non-Markovian effects of the reservoirs can be used as a resource to extract work from an Otto cycle. The state transformation under non-Markovian dynamics is achieved via a two-step process, namely an isothermal process using a Markovia
In this work I will discuss some numerical results on the stability of the many-body localized phase to thermal inclusions. The work simplifies a recent proposal by Morningstar et al. [arXiv:2107.05642] and studies small disordered spin chains which
Active biological systems reside far from equilibrium, dissipating heat even in their steady state, thus requiring an extension of conventional equilibrium thermodynamics and statistical mechanics. In this Letter, we have extended the emerging framew
We investigate the thermodynamic properties and the lattice stability of two-dimensional crystalline membranes, such as graphene and related compounds, in the low temperature quantum regime $Trightarrow0$. A key role is played by the anharmonic coupl
Macroscopic parameters as well as precise information on the random force characterizing the Langevin type description of the nuclear fusion process around the Coulomb barrier are extracted from the microscopic dynamics of individual nucleons by expl