ﻻ يوجد ملخص باللغة العربية
The Gaia Data Release 1 (DR1) sample of white dwarf parallaxes is presented, including 6 directly observed degenerates and 46 white dwarfs in wide binaries. This data set is combined with spectroscopic atmospheric parameters to study the white dwarf mass-radius relationship (MRR). Gaia parallaxes and G magnitudes are used to derive model atmosphere dependent white dwarf radii, which can then be compared to the predictions of a theoretical MRR. We find a good agreement between Gaia DR1 parallaxes, published effective temperatures (Teff) and surface gravities (log g), and theoretical MRRs. As it was the case for Hipparcos, the precision of the data does not allow for the characterisation of hydrogen envelope masses. The uncertainties on the spectroscopic atmospheric parameters are found to dominate the error budget and current error estimates for well-known and bright white dwarfs may be slightly optimistic. With the much larger Gaia DR2 white dwarf sample it will be possible to explore the MRR over a much wider range of mass, Teff, and spectral types.
The lowest-mass stars, brown dwarfs and giant exoplanets span a minimum in the mass-radius relationship that probes the fundamental physics of extreme states of matter, magnetism, and fusion. This White Paper outlines scientific opportunities and the
We explore the luminosity L of magnetized white dwarfs and its effect on the mass-radius relation. We self-consistently obtain the interface between the electron degenerate gas dominated inner core and the outer ideal gas surface layer or envelope by
We present the preliminary results of a survey of the open clusters NGC3532 and NGC2287 for new white dwarf members which can help improve understanding of the form of the upper end of the stellar initial mass-final mass relation. We identify four ob
The initial-final mass relation (IFMR) represents the total mass lost by a star during the entirety of its evolution from the zero age main sequence to the white dwarf cooling track. The semi-empirical IFMR is largely based on observations of DA whit
We investigate the luminosity suppression and its effect on the mass-radius relation as well as cooling evolution of highly magnetised white dwarfs. Based on the effect of magnetic field relative to gravitational energy, we suitably modify our treatm