ﻻ يوجد ملخص باللغة العربية
Recently, several studies have discovered a strong discrepancy between the large-scale clustering biases of two subsamples of galaxy clusters at the same halo mass, split by their average projected membership distances $R_{mathrm{mem}}$. The level of this discrepancy significantly exceeds the maximum halo assembly bias signal predicted by LCDM. In this study, we explore whether some of the clustering bias differences could be caused by biases in $R_{mathrm{mem}}$ due to projection effects from other systems along the line-of-sight. We thoroughly investigate the halo assembly bias of the photometrically-detected redMaPPer clusters in SDSS, by defining a new variant of the average membership distance estimator $tilde{R}_{mathrm{mem}}$ that is more robust against projection effects in the cluster membership identification. Using the angular mark correlation functions of clusters, we show that the large-scale bias differences when splitting by $R_{mathrm{mem}}$ can be largely attributed to such projection effects. After splitting by $tilde{R}_{mathrm{mem}}$, the anomalously large signal is reduced, giving a ratio of $1.02pm0.14$ between the two clustering biases as measured from weak lensing. Using a realistic mock cluster catalog, we predict that the bias ratio between two $tilde{R}_{mathrm{mem}}$-split subsamples should be $<1.10$, which is at least 60% weaker than the maximum halo assembly bias signal (1.24) when split by halo concentration. Therefore, our results demonstrate that the level of halo assembly bias exhibited by redMaPPer clusters in SDSS is consistent with the LCDM prediction. With a ten-fold increase in cluster numbers, deeper ongoing surveys will enable a more robust detection of halo assembly bias. Our findings also have important implications for how projection effects and their impact on cluster cosmology can be quantified in photometric cluster catalogs.
We investigate the level of galaxy assembly bias in the Sloan Digital Sky Survey (SDSS) main galaxy redshift survey using ELUCID, a state-of-the-art constrained simulation that accurately reconstructed the initial density perturbations within the SDS
Dark matter halo clustering depends not only on halo mass, but also on other properties such as concentration and shape. This phenomenon is known broadly as assembly bias. We explore the dependence of assembly bias on halo definition, parametrized by
Using samples drawn from the Sloan Digital Sky Survey, we study the relationship between local galaxy density and the properties of galaxies on the red sequence. After removing the mean dependence of average overdensity (or environment) on color and
If the formation of central galaxies in dark matter haloes traces the assembly history of their host haloes, in haloes of fixed mass, central galaxy clustering may show dependence on properties indicating their formation history. Such a galaxy assemb
We study potential systematic effects of assembly bias on cosmological parameter constraints from redshift space distortion measurements. We use a semi-analytic galaxy formation model applied to the Millennium N-body WMAP-7 simulation to study the ef