ترغب بنشر مسار تعليمي؟ اضغط هنا

Multilevel and Multi-index Monte Carlo methods for the McKean-Vlasov equation

65   0   0.0 ( 0 )
 نشر من قبل Abdul-Lateef Haji-Ali
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We address the approximation of functionals depending on a system of particles, described by stochastic differential equations (SDEs), in the mean-field limit when the number of particles approaches infinity. This problem is equivalent to estimating the weak solution of the limiting McKean-Vlasov SDE. To that end, our approach uses systems with finite numbers of particles and a time-stepping scheme. In this case, there are two discretization parameters: the number of time steps and the number of particles. Based on these two parameters, we consider different variants of the Monte Carlo and Multilevel Monte Carlo (MLMC) methods and show that, in the best case, the optimal work complexity of MLMC, to estimate the functional in one typical setting with an error tolerance of $mathrm{TOL}$, is $mathcal Oleft({mathrm{TOL}^{-3}}right)$ when using the partitioning estimator and the Milstein time-stepping scheme. We also consider a method that uses the recent Multi-index Monte Carlo method and show an improved work complexity in the same typical setting of $mathcal Oleft(mathrm{TOL}^{-2}log(mathrm{TOL}^{-1})^2right)$. Our numerical experiments are carried out on the so-called Kuramoto model, a system of coupled oscillators.



قيم البحث

اقرأ أيضاً

In this paper, we present a generic methodology for the efficient numerical approximation of the density function of the McKean-Vlasov SDEs. The weak error analysis for the projected process motivates us to combine the iterative Multilevel Monte Carl o method for McKean-Vlasov SDEs cite{szpruch2019} with non-interacting kernels and projection estimation of particle densities cite{belomestny2018projected}. By exploiting smoothness of the coefficients for McKean-Vlasov SDEs, in the best case scenario (i.e $C^{infty}$ for the coefficients), we obtain the complexity of order $O(epsilon^{-2}|logepsilon|^4)$ for the approximation of expectations and $O(epsilon^{-2}|logepsilon|^5)$ for density estimation.
76 - Yaxian Xu , Ajay Jasra , 2018
In this paper we consider sequential joint state and static parameter estimation given discrete time observations associated to a partially observed stochastic partial differential equation (SPDE). It is assumed that one can only estimate the hidden state using a discretization of the model. In this context, it is known that the multi-index Monte Carlo (MIMC) method of [11] can be used to improve over direct Monte Carlo from the most precise discretizaton. However, in the context of interest, it cannot be directly applied, but rather must be used within another advanced method such as sequential Monte Carlo (SMC). We show how one can use the MIMC method by renormalizing the MI identity and approximating the resulting identity using the SMC$^2$ method of [5]. We prove that our approach can reduce the cost to obtain a given mean square error (MSE), relative to just using SMC$^2$ on the most precise discretization. We demonstrate this with some numerical examples.
We propose a novel $hp$-multilevel Monte Carlo method for the quantification of uncertainties in the compressible Navier-Stokes equations, using the Discontinuous Galerkin method as deterministic solver. The multilevel approach exploits hierarchies o f uniformly refined meshes while simultaneously increasing the polynomial degree of the ansatz space. It allows for a very large range of resolutions in the physical space and thus an efficient decrease of the statistical error. We prove that the overall complexity of the $hp$-multilevel Monte Carlo method to compute the mean field with prescribed accuracy is, in best-case, of quadratic order with respect to the accuracy. We also propose a novel and simple approach to estimate a lower confidence bound for the optimal number of samples per level, which helps to prevent overestimating these quantities. The method is in particular designed for application on queue-based computing systems, where it is desirable to compute a large number of samples during one iteration, without overestimating the optimal number of samples. Our theoretical results are verified by numerical experiments for the two-dimensional compressible Navier-Stokes equations. In particular we consider a cavity flow problem from computational acoustics, demonstrating that the method is suitable to handle complex engineering problems.
215 - Ajay Jasra , Kody Law , 2017
This article reviews the application of advanced Monte Carlo techniques in the context of Multilevel Monte Carlo (MLMC). MLMC is a strategy employed to compute expectations which can be biased in some sense, for instance, by using the discretization of a associated probability law. The MLMC approach works with a hierarchy of biased approximations which become progressively more accurate and more expensive. Using a telescoping representation of the most accurate approximation, the method is able to reduce the computational cost for a given level of error versus i.i.d. sampling from this latter approximation. All of these ideas originated for cases where exact sampling from couples in the hierarchy is possible. This article considers the case where such exact sampling is not currently possible. We consider Markov chain Monte Carlo and sequential Monte Carlo methods which have been introduced in the literature and we describe different strategies which facilitate the application of MLMC within these methods.
Methods for generating sequences of surrogates approximating fine scale models of two-phase random heterogeneous media are presented that are designed to adaptively control the modeling error in key quantities of interest (QoIs). For specificity, the base models considered involve stochastic partial differential equations characterizing, for example, steady-state heat conduction in random heterogeneous materials and stochastic elastostatics problems in linear elasticity. The adaptive process involves generating a sequence of surrogate models defined on a partition of the solution domain into regular subdomains and then, based on estimates of the error in the QoIs, assigning homogenized effective material properties to some subdomains and full random fine scale properties to others, to control the error so as to meet a preset tolerance. New model-based Multilevel Monte Carlo (mbMLMC) methods are presented that exploit the adaptive sequencing and are designed to reduce variances and thereby accelerate convergence of Monte Carlo sampling. Estimates of cost and mean squared error of the method are presented. The results of several numerical experiments are discussed that confirm that substantial saving in computer costs can be realized through the use of controlled surrogate models and the associated mbMLMC algorithms.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا