ﻻ يوجد ملخص باللغة العربية
We review the concept of support vector machines (SVMs) and discuss examples of their use. One of the benefits of SVM algorithms, compared with neural networks and decision trees is that they can be less susceptible to over fitting than those other algorithms are to over training. This issue is related to the generalisation of a multivariate algorithm (MVA); a problem that has often been overlooked in particle physics. We discuss cross validation and how this can be used to improve the generalisation of a MVA in the context of High Energy Physics analyses. The examples presented use the Toolkit for Multivariate Analysis (TMVA) based on ROOT and describe our improvements to the SVM functionality and new tools introduced for cross validation within this framework.
We develop a machine learning framework that can be applied to data sets derived from the trajectories of Hamiltons equations. The goal is to learn the phase space structures that play the governing role for phase space transport relevant to particul
A widely-used tool for binary classification is the Support Vector Machine (SVM), a supervised learning technique that finds the maximum margin linear separator between the two classes. While SVMs have been well studied in the batch (offline) setting
Many problems that appear in biomedical decision making, such as diagnosing disease and predicting response to treatment, can be expressed as binary classification problems. The costs of false positives and false negatives vary across application dom
Support Vector Machines (SVM), a popular machine learning technique, has been applied to a wide range of domains such as science, finance, and social networks for supervised learning. Whether it is identifying high-risk patients by health-care profes
Sparse classifiers such as the support vector machines (SVM) are efficient in test-phases because the classifier is characterized only by a subset of the samples called support vectors (SVs), and the rest of the samples (non SVs) have no influence on