ﻻ يوجد ملخص باللغة العربية
Reconstruction of the point spread function (PSF) is a critical process in weak lensing measurement. We develop a real-data based and galaxy-oriented pipeline to compare the performances of various PSF reconstruction schemes. Making use of a large amount of the CFHTLenS data, the performances of three classes of interpolating schemes - polynomial, Kriging, and Shepard - are evaluated. We find that polynomial interpolations with optimal orders and domains perform the best. We quantify the effect of the residual PSF reconstruction error on shear recovery in terms of the multiplicative and additive biases, and their spatial correlations using the shear measurement method of Zhang et al. (2015). We find that the impact of PSF reconstruction uncertainty on the shear-shear correlation can be significantly reduced by cross correlating the shear estimators from different exposures. It takes only 0.2 stars (SNR > 100) per square arcmin on each exposure to reach the best performance of PSF interpolation, a requirement that is generally satisfied in the CFHTlenS data.
A main science goal for the Large Synoptic Survey Telescope (LSST) is to measure the cosmic shear signal from weak lensing to extreme accuracy. One difficulty, however, is that with the short exposure time ($simeq$15 seconds) proposed, the spatial va
Accurate reconstruction of the spatial distributions of the Point Spread Function (PSF) is crucial for high precision cosmic shear measurements. Nevertheless, current methods are not good at recovering the PSF fluctuations of high spatial frequencies
Weak lensing surveys are emerging as an important tool for the construction of mass selected clusters of galaxies. We evaluate both the efficiency and completeness of a weak lensing selection by combining a dense, complete redshift survey, the Smiths
We generalize ERA method of PSF correction for more realistic situations. The method re-smears the observed galaxy image(galaxy image smeared by PSF) and PSF image by an appropriate function called Re-Smearing Function(RSF) to make new images which h
We use a dense redshift survey in the foreground of the Subaru GTO2deg^2 weak lensing field (centered at $alpha_{2000}$ = 16$^h04^m44^s$;$delta_{2000}$ =43^circ11^{prime}24^{primeprime}$) to assess the completeness and comment on the purity of massiv