ﻻ يوجد ملخص باللغة العربية
Most real-world data can be modeled as heterogeneous information networks (HINs) consisting of vertices of multiple types and their relationships. Search for similar vertices of the same type in large HINs, such as bibliographic networks and business-review networks, is a fundamental problem with broad applications. Although similarity search in HINs has been studied previously, most existing approaches neither explore rich semantic information embedded in the network structures nor take users preference as a guidance. In this paper, we re-examine similarity search in HINs and propose a novel embedding-based framework. It models vertices as low-dimensional vectors to explore network structure-embedded similarity. To accommodate user preferences at defining similarity semantics, our proposed framework, ESim, accepts user-defined meta-paths as guidance to learn vertex vectors in a user-preferred embedding space. Moreover, an efficient and parallel sampling-based optimization algorithm has been developed to learn embeddings in large-scale HINs. Extensive experiments on real-world large-scale HINs demonstrate a significant improvement on the effectiveness of ESim over several state-of-the-art algorithms as well as its scalability.
Meta-graph is currently the most powerful tool for similarity search on heterogeneous information networks,where a meta-graph is a composition of meta-paths that captures the complex structural information. However, current relevance computing based
Networks found in the real-world are numerous and varied. A common type of network is the heterogeneous network, where the nodes (and edges) can be of different types. Accordingly, there have been efforts at learning representations of these heteroge
Heterogeneous Information Network (HIN) has attracted much attention due to its wide applicability in a variety of data mining tasks, especially for tasks with multi-typed objects. A potentially large number of meta-paths can be extracted from the he
PathSim is a widely used meta-path-based similarity in heterogeneous information networks. Numerous applications rely on the computation of PathSim, including similarity search and clustering. Computing PathSim scores on large graphs is computational
There is recently a surge in approaches that learn low-dimensional embeddings of nodes in networks. As there are many large-scale real-world networks, its inefficient for existing approaches to store amounts of parameters in memory and update them ed