ATLASGAL-selected massive clumps in the inner Galaxy III. Dust Continuum Characterization of an Evolutionary Sample


الملخص بالإنكليزية

The ATLASGAL survey provides an ideal basis for detailed studies of large numbers of massive star forming clumps covering the whole range of evolutionary stages. The ATLASGAL Top100 is a sample of clumps selected from their infrared and radio properties to be representative for the whole range of evolutionary stages. The ATLASGAL Top100 sources are the focus of a number of detailed follow-up studies that will be presented in a series of papers. In the present work we use the dust continuum emission to constrain the physical properties of this sample and identify trends as a function of source evolution. We determine flux densities from mid-infrared to submm wavelength (8-870 micron) images and use these values to fit their spectral energy distributions (SEDs) and determine their dust temperature and flux. Combining these with recent distances from the literature including maser parallax measurements we determine clump masses, luminosities and column densities. We find trends for increasing temperature, luminosity and column density with the proposed evolution sequence, confirming that this sample is representative of different evolutionary stages of massive star formation. We show that most of the sample has the ability to form massive stars (including the most massive O-type stars) and that the majority is gravitationally unstable and hence likely to be collapsing. The highest column density ATLASGAL sources presented cover the whole range of evolutionary stages from the youngest to the most evolved high-mass star forming clumps. Their study provides a unique starting point for more in-depth research on massive star formation in four distinct evolutionary stages whose well defined physical parameters afford more detailed studies. As most of the sample is closer than 5 kpc, these sources are also ideal for follow-up observations with high spatial resolution.

تحميل البحث