ترغب بنشر مسار تعليمي؟ اضغط هنا

Measurement of the $D^+$-meson production cross section at low transverse momentum in $pbar{p}$ collisions at $sqrt{s}=1.96$ TeV

137   0   0.0 ( 0 )
 نشر من قبل Diego Tonelli
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on a measurement of the $D^{+}$-meson production cross section as a function of transverse momentum ($p_T$) in proton-antiproton ($pbar{p}$) collisions at 1.96 TeV center-of-mass energy, using the full data set collected by the Collider Detector at Fermilab in Tevatron Run II and corresponding to 10 fb$^{-1}$ of integrated luminosity. We use $D^{+} to K^-pi^+pi^+$ decays fully reconstructed in the central rapidity region $|y|<1$ with transverse momentum down to 1.5 GeV/$c$, a range previously unexplored in $pbar{p}$ collisions. Inelastic $pbar{p}$-scattering events are selected online using minimally-biasing requirements followed by an optimized offline selection. The $K^-pi^+pi^+$ mass distribution is used to identify the $D^+$ signal, and the $D^+$ transverse impact-parameter distribution is used to separate prompt production, occurring directly in the hard scattering process, from secondary production from $b$-hadron decays. We obtain a prompt $D^+$ signal of 2950 candidates corresponding to a total cross section $sigma(D^+, 1.5 < p_T < 14.5~mbox{GeV/}c, |y|<1) = 71.9 pm 6.8 (mbox{stat}) pm 9.3 (mbox{syst})~mu$b. While the measured cross sections are consistent with theoretical estimates in each $p_T$ bin, the shape of the observed $p_T$ spectrum is softer than the expectation from quantum chromodynamics. The results are unique in $pbar{p}$ collisions and can improve the shape and uncertainties of future predictions.



قيم البحث

اقرأ أيضاً

We describe a measurement of the ratio of the cross sections times branching fractions of the $B_c^+$ meson in the decay mode $B_c^+ rightarrow J/psi mu u$ to the $B^+$ meson in the decay mode $B^+ rightarrow J/psi K^+$ in proton-antiproton collision s at center-of-mass energy $sqrt{s}=1.96$ TeV. The measurement is based on the complete CDF Run II data set, which comes from an integrated luminosity of $8.7,{rm fb}^{-1}$. The ratio of the production cross sections times branching fractions for $B_c^+$ and $B_c^+$ mesons with momentum transverse to the beam greater than $6~textrm{GeV}/c$ and rapidity magnitude smaller than 0.6 is $0.211pm 0.012~mbox{(stat)}^{+0.021}_{-0.020}~mbox{(syst)}$. Using the known $B^+ rightarrow J/psi K^+$ branching fraction, the known $B^+$ production cross section, and a selection of the predicted $B_c^+ rightarrow J/psi mu u$ branching fractions, the range for the total $B_c^+$ production cross section is estimated.
We present a measurement of the inclusive jet cross section using the Run II cone algorithm and data collected by the D0 experiment in p pbar collisions at a center-of-mass energy sqrt(s)=1.96 TeV, corresponding to an integrated luminosity of 0.70 fb ^(-1). The jet energy calibration and the method used to extract the inclusive jet cross section are described. We discuss the main uncertainties, which are dominated by the jet energy scale uncertainty. The results cover jet transverse momenta from 50 GeV to 600 GeV with jet rapidities in the range -2.4 to 2.4 and are compared to predictions using recent proton parton distribution functions. Studies of correlations between systematic uncertainties in transverse momentum and rapidity are presented.
171 - CDF Collaboration 2012
The transverse momentum cross section of $e^+e^-$ pairs in the $Z$-boson mass region of 66-116 GeV/$c^2$ is precisely measured using Run II data corresponding to 2.1 fb$^{-1}$ of integrated luminosity recorded by the Collider Detector at Fermilab. Th e cross section is compared with quantum chromodynamic calculations. One is a fixed-order perturbative calculation at ${cal O}(alpha_s^2)$, and the other combines perturbative predictions at high transverse momentum with the gluon resummation formalism at low transverse momentum. Comparisons of the measurement with calculations show reasonable agreement. The measurement is of sufficient precision to allow refinements in the understanding of the transverse momentum distribution.
We report a measurement of the differential cross section, d{sigma}/d(cos {theta}t), for top-quark-pair production as a function of the top-quark production angle in proton-antiproton collisions at sqrt{s} = 1.96 TeV. This measurement is performed us ing data collected with the CDF II detector at the Tevatron, corresponding to an integrated luminosity of 9.4/fb. We employ the Legendre polynomials to characterize the shape of the differential cross section at the parton level. The observed Legendre coefficients are in good agreement with the prediction of the next-to-leading-order standard-model calculation, with the exception of an excess linear-term coefficient, a1 = 0.40 +- 0.12, compared to the standard-model prediction of a1 = 0.15^{+0.07}_{-0.03}.
We present a measurement of the elastic differential cross section $dsigma(pbar{p}rightarrow pbar{p})/dt$ as a function of the four-momentum-transfer squared t. The data sample corresponds to an integrated luminosity of $approx 31 nb^{-1}$ collected with the D0 detector using dedicated Tevatron $pbar{p} $ Collider operating conditions at sqrt(s) = 1.96 TeV and covers the range $0.26 <|t|< 1.2 GeV^2$. For $|t|<0.6 GeV^2$, dsigma/dt is described by an exponential function of the form $Ae^{-b|t|}$ with a slope parameter $ b = 16.86 pm 0.10(stat) pm 0.20(syst) GeV^{-2}$. A change in slope is observed at $|t| approx 0.6 GeV^2$, followed by a more gradual |t| dependence with increasing values of |t|.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا