ﻻ يوجد ملخص باللغة العربية
In multivariate extreme value theory (MEVT), the focus is on analysis outside of the observable sampling zone, which implies that the region of interest is associated to high risk levels. This work provides tools to include directional notions into the MEVT, giving the opportunity to characterize the recently introduced directional multivariate quantiles (DMQ) at high levels. Then, an out-sample estimation method for these quantiles is given. A bootstrap procedure carries out the estimation of the tuning parameter in this multivariate framework and helps with the estimation of the DMQ. Asymptotic normality for the proposed estimator is provided and the methodology is illustrated with simulated data-sets. Finally, a real-life application to a financial case is also performed.
We give an axiomatic foundation to $Lambda$-quantiles, a family of generalized quantiles introduced by Frittelli et al. (2014) under the name of Lambda Value at Risk. Under mild assumptions, we show that these functionals are characterized by a prope
Several environmental phenomena can be described by different correlated variables that must be considered jointly in order to be more representative of the nature of these phenomena. For such events, identification of extremes is inappropriate if it
For testing two random vectors for independence, we consider testing whether the distance of one vector from a center point is independent from the distance of the other vector from a center point by a univariate test. In this paper we provide condit
Consider the empirical measure, $hat{mathbb{P}}_N$, associated to $N$ i.i.d. samples of a given probability distribution $mathbb{P}$ on the unit interval. For fixed $mathbb{P}$ the Wasserstein distance between $hat{mathbb{P}}_N$ and $mathbb{P}$ is a
For extreme value copulas with a known upper tail dependence coefficient we find pointwise upper and lower bounds, which are used to establish upper and lower bounds of the Spearman and Kendall correlation coefficients. We shown that in all cases the