ترغب بنشر مسار تعليمي؟ اضغط هنا

Impact of Fe site Co substitution on superconductivity of Fe1-xCoxSe0.5Te0.5 (x = 0.0 to 0.10): A flux free single crystal study

111   0   0.0 ( 0 )
 نشر من قبل Veer Awana Dr
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report synthesis of Co substitution at Fe site in Fe1-xCoxSe0.5Te0.5 (x=0.0 to 0.10) single crystals via vacuum shield solid state reaction route using flux free method. Single crystal XRD results showed that these crystals grow in (00l) plane i.e., orientation in c-direction. All the crystals possess tetragonal structure having P4/nmm space group. Detailed scanning electron microscopy (SEM) images show that the crystals are grown in slab-like morphology. The EDAX results revealed the final elemental composition to be near stoichiometric. Powder X-Ray diffraction (PXRD) Rietveld analysis results show that (00l) peaks are shifted towards higher angle with increasing Co concentration. Both a and c lattice parameters decrease with increasing Co concentration in Fe1-xCoxSe0.5Te0.5 (x=0.0 to 0.10) single crystals. Low temperature transport and magnetic measurements show that the superconducting transition temperature (Tc), decreases from around 12K to 10K and 4K for x=0.03 and x=0.05 respectively. For x=0.10 crystal superconductivity is not observed down to 2K.



قيم البحث

اقرأ أيضاً

We report the effect of Ni doping on superconductivity of FeSe0.5Te0.5. The single crystal samples of series Fe1-xNixSe0.5Te0.5 (x=0.0, 0.01, 0.03, 0.05, 0.07, 0.10 and 0.20) are synthesized via vacuum shield solid state reaction route and high tempe rature heating followed by slow cooling. All the crystals of Fe1-xNixSe0.5Te0.5 series with x up to 0.20, i.e., 20% substitution of Ni at Fe site are crystallized in single phase tetragonal structure with space group P4/nmm. The electrical resistivity measurements revealed that Tc decreases fast with increase of Ni concentration in Fe1-xNixSe0.5Te0.5. Namely the superconducting transition temperature (Tc) being defined as resistivity =0 decrease from 12K to around 4K and 2K for x=0.01 and 0.03 samples respectively. For x=0.05 (5at% Ni at Fe site) though Tconset is observed in resistivity measurements but r{ho}=0 is not seen down to 2K. For x more than 0.07, neither the Tconset nor Tcr{ho}=0 is seen down 2K in R-T measurements. It is demonstrated that Ni doping at Fe site in FeSe0.5Te0.5 superconductor suppresses superconductivity fast. The rate of Tc depression is albeit non monotonic. Summarily, a systematic study on suppression of superconductivity with Fe site Ni doping in flux free gown FeSe0.5Te0.5 single crystals is presented in the current communication.
We report synthesis, structural details and magnetization of SmFe1-xCoxAsO with x ranging from 0.0 to 0.30. It is found that Co substitutes fully at Fe site in SmFeAsO in an iso-structural lattice with slightly compressed cell. The parent compound ex hibited known spin density wave (SDW) character below at around 140 K. Successive doping of Co at Fe site suppressed the SDW transition for x = 0.05 and later induced superconductivity for x = 0.10, 0.15 and 0.20 respectively at 14, 15.5 and 9K. The lower critical field as seen from magnetization measurements is below 200Oe. The appearance of bulk superconductivity is established by wide open isothermal magnetization M(H) loops. Superconductivity is not observed for higher content of Co i.e. x = 0.30. Clearly the Co substitution at Fe site in SmFe1-xCoxAsO diminishes the Fe SDW character, introduces bulk superconductivity for x between 0.10 and 0.20 and finally becomes non-superconducting for x above 0.20. The Fe2+ site Co3+ substitution injects mobile electrons to the system and superconductivity appears, however direct substitution introduces simultaneous disorder in superconducting FeAs layer and thus superconductivity disappears for higher content of Co.
In conventional s-wave superconductors, only magnetic impurities exhibit impurity bound states, whereas for an s+- order parameter they can occur for both magnetic and non-magnetic impurities. Impurity bound states in superconductors can thus provide important insight into the order parameter. Here, we present a combined experimental and theoretical study of native and engineered iron-site defects in LiFeAs. Detailed comparison of tunneling spectra measured on impurities with spin fluctuation theory reveals a continuous evolution from negligible impurity bound state features for weaker scattering potential to clearly detectable states for somewhat stronger scattering potentials. All bound states for these intermediate strength potentials are pinned at or close to the gap edge of the smaller gap, a phenomenon that we explain and ascribe to multi-orbital physics.
143 - N. Ni , M. E. Tillman , J.-Q. Yan 2008
Single crystalline samples of Ba(Fe$_{1-x}$Co$_x$)$_2$As$_2$ with $x < 0.12$ have been grown and characterized via microscopic, thermodynamic and transport measurements. With increasing Co substitution, the thermodynamic and transport signatures of t he structural (high temperature tetragonal to low temperature orthorhombic) and magnetic (high temperature non magnetic to low temperature antiferromagnetic) transitions are suppressed at a rate of roughly 15 K per percent Co. In addition, for $x ge 0.038$ superconductivity is stabilized, rising to a maximum $T_c$ of approximately 23 K for $x approx 0.07$ and decreasing for higher $x$ values. The $T - x$ phase diagram for Ba(Fe$_{1-x}$Co$_x$)$_2$As$_2$ indicates that either superconductivity can exist in both low temperature crystallographic phases or that there is a structural phase separation. Anisotropic, superconducting, upper critical field data ($H_{c2}(T)$) show a significant and clear change in anisotropy between samples that have higher temperature structural phase transitions and those that do not. These data show that the superconductivity is sensitive to the suppression of the higher temperature phase transition.
288 - Y. K. Li , X. Lin , Z. W. Zhu 2009
We investigate superconductivity and transport properties of Co doped SmFe$_{1-x}$Co$_{x}$AsO system. The antiferromagnetic (AFM) spin-density wave (SDW) order is rapidly suppressed by Co doping, and superconductivity emerges as $x$ $geq$ 0.05. $T_c$ $^{mid}$ increases with increasing Co content, shows a maximum of 17.2 K at the optimally doping of $xsim$ 0.10. A phase diagram is derived based on the transport measurements and a dome-like $T_c$ versus $x$ curve is established. Meanwhile we found that the normal state thermopower might consist of two different contributions. One contribution increases gradually with increasing $x$, and the other contribution is abnormally enhanced in the superconducting window 0.05 $leq$ $x$ $leq$ 0.20, and shows a dome-like doping dependence. A close correlation between $T_{c}$ and the abnormally enhanced term of thermopower is proposed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا