ﻻ يوجد ملخص باللغة العربية
Let $f:,X to mathbb{P}^1$ be a non-isotrivial semi-stable family of varieties of dimension $m$ over $mathbb{P}^1$ with $s$ singular fibers. Assume that the smooth fibers $F$ are minimal, i.e., their canonical line bundles are semiample. Then $kappa(X)leq kappa(F)+1$. If $kappa(X)=kappa(F)+1$, then $s>frac{4}m+2$. If $kappa(X)geq 0$, then $sgeqfrac{4}m+2$. In particular, if $m=1$, $s=6$ and $kappa(X)=0$, then the family $f$ is Teichmuller.
We prove that the moduli spaces of curves of genus 22 and 23 are of general type. To do this, we calculate certain virtual divisor classes of small slope associated to linear series of rank 6 with quadric relations. We then develop new tropical metho
In this note, we apply the semi-ampleness criterion in Lemma 3.1 to prove many classical results in the study of abundance conjecture. As a corollary, we prove abundance for large Kodaira dimension depending only on [BCHM10].
Kodaira fibred surfaces are a remarkable example of projective classifying spaces, and there are still many intriguing open questions concerning them, especially the slope question. The topological characterization of Kodaira fibrations is emblematic
The fundamental group $pi_1(L)$ of a knot or link $L$ may be used to generate magic states appropriate for performing universal quantum computation and simultaneously for retrieving complete information about the processed quantum states. In this pap
We give a universal approach to the deformation-obstruction theory of objects of the derived category of coherent sheaves over a smooth projective family. We recover and generalise the obstruction class of Lowen and Lieblich, and prove that it is a p